Leiden Grid Infrastructure

Dr. M.F. Somers

25 February 2015.
v 1.31.9
Table of content:
TaDIE Of COMEIENT......cceeiivieeiieeeeeeeciieeeee et eeeeer e e e e e eeeesatrreaeeeeeeeeeeesssssnsseenes 1
ST A CoTe 1011 o) « T 3
RAtIONALE.......ccoieiiieiiie eeensaraaeees 3
(€ 211G 21 6 (o) g s FO PSRRI 4
Database SIIUCLUIE........cccuvvveiieeeeieeiiireeeee e eeeere e e e e e eeetb e e e e e eeseraaaneeeeeeeeaaeaaaanns 6
JOD_QUEUE. ...ttt ettt ettt ettt ettt e b et e ee 6
TUNNINEZ_LOCKS . ..eeeitieiiiie ettt ettt e et e et e e st e e sbeeesnnbaeeeeeensbneeaeenns 7
ACTIVE _TESOUICES e eeeeeeeeeeeeeeeeeee e e e e et e e eee e s e e e aeseraanesesanneseraenaeserennaeserenaeseranaaens 8
TUNININZ_SESSIONS.c.uvtteutreeeireeerireeeeereeessteeensseeessseessseessseessseesssseessseessssesesssesenseesssseees 8
USETS_ALIOWE.....eeeiiiiiieieeee ettt e e et et e et e e e e e e eeaaaas 9
GLOUPS_ALTOWEA. ..ot 9
0TS S (53 011« DTSSR 10
rOUPS_AENIEA. c....eiiiiiiiiiiiiiiee et 10
UPAALES. ...ttt ettt ettt et e s e ettt et e sat e et e st e be e st et e s e e s aaneee e 10
EVEIIE_QUEUE. ...ceuutieiutteeriteeeiteeeitte e st e e sttt e e aateeesteeeabteesabteeeabeeeaabeesbbeesbbeeeesaanbbaeeeenn 11
Resource interfacing with the project SErVer........cueevuieviieeriieeriieeriieeeiieeeiieeee e 11
TESOUICE_SIZNUP_TESOUICTE. ...eeeuuvreeureeaureeauteeatteesssteeansreessreessaeesseeesseeesseeesseesnsns 12
1eSOUrCe_SIZNOFT_TESOUICTE. ...ccuuviiiiiiiiiiieiiieeite et e 13
TESOUICE_TEQUEST_WOTK.....etiiiiiiiiiiiieiie ettt ettt e e e 13
resource_request_job_detailS........c.eevviiiiiiiiiiiieiiee e 15
TESOUTCE_1OCK_JOD..cniiiiiiiiiiiiiieiee ettt et 16
1E€SOUICE_UNIOCK_JOD...oiiiiiiiiiiiiiie ettt et e st e s 16
1ESOUICE_UPAAte_JOD.....iiiiiiiiiiiiiiiiece e s 17
TESOUTCE_SUDIMIL_JOD....eiiiiiieiiieeiiieeiiieeitee et eit e eite e st e et eesbeeeeaaeeeabeeennneesenens 17
TESOUTCE_JOD_STALE...ceiuuiieiiieeiiieesieeeiee et e et e et st e et e et e ettt e e e snebbeeeeeesnnsaneeees 18
reSOUICE_TeqUest_TeSOUICE_AALA......ccuvvieeiriiiieeeiiiiee et eetee et e e e e e e 19
Job 10cking MECRANISITL.....cccuviiiiiiiiiiieeiiee ettt bree e e e 19
Application interface interfacing with the project Server..........ccccoeeveeercveeeriveeeeeennnnee. 21
INEETfaCe_SUDMIL_JOD....eiiiiiiiiiiieciieeciee et ettt e e e e e e eeaaeee s 21
TNEETTACE_JOD_SALE.....eoueiiiiieiiieiie ettt et s 22
INLEIface_dElEte_JOD.....iiiiiiiiiiieeiieecte ettt e 25
Interface_Project_SETVET_lIST.......cooiiriiiiiiiiieeieiie ettt 26
Interface_project_IeSOUICE_liSt......cuuiiriireriieeiiieeiieeeiieeereeereeesreeesireeeareeeneaaeee s 26
Project server synchronization APL.............cccociiiiiiiiiiiiii e 27
SEIVET_ZET_UPAALE.eiiiiiiiiiiiiiiiee ettt ettt st e e e ee s 28

SEIVET_TUN_UPAALE. ..cueeiieniiieeiiieeeiieeeite et te ettt e ettt e et e et e e sabae e st e esateesaseesaneeens 28

LGS 4 51 oF 1 ST UPRRPRP 29
Resource daemon.........coouviiiiiiiiiii e 30
JOb_CheCK_TUNNING_SCIIPL.....coiiiiiiiiiiiiiiiiiee ettt e et e e e e eiieeeeeeas 33
job_check _finished_SCTIPL........coouiiiiiiiiiiiiieeee e 33
JOD_ADOTE_SCTIPE.c..eeeiiiieeiiieeeiite ettt ettt et ettt ettt e s e et e st e e e s e eaeeaeee 33
JOD_PIOIOZUE_SCTIPL. ...ttt ettt et e e s 33
JOD_TUNL_SCIIPE. c.teiitieiiiteeitte ettt ettt ettt e e e st e et e e sabe e e sabeeesabeeenareeeseannseees 33
JOD_EPIOZUE_SCIIPL...eeiuiiiiiiiiieiiieeeite ettt ettt ettt e e e e e e e e saieaeeee s 34
check _SyStem_lIMitS_SCIIPL....cuueeeruiieriieeiiieeeiteeeiee ettt e 34
JOb_CheCK _TIMIES_SCIIPL...ceeiueiiiriiieiiiiieiiee ettt et 34
REIIO_WOTTA......oiiiiiiiie et 34
check _SyStem_lIMitS_SCIIPL...ccuueeruieeriieeiiie ettt ettt e e e 35
JOD_ADOTE_SCTIPL...eeeeuiiieeiiieeitee ettt ettt ei e et e et e et ee st e e st e e e e esnnbneeeeennas 35
job_check_finiShed_SCTiPt.......ccccuiiiiiiiiiiiiiiiieeiieeeeeete e 35
JOD_CheCK _TIMILS_SCIIPL...ceeiiiieiiieeiiieeiiee ettt ettt et e e e e e ibeeeee e 35
JOb_CheCK_1running_SCTIPL......cccveeerieeiriiieiiieeeiiee ettt ettt 35
JOD_EPIOZUE_SCIIPL. . .eeeuiiieeiieeeiiee ettt ettt ettt e et e et eeebeeenaeeennsaeeees 36
JOD_PTOLOZUE_SCTIPL.....eeeuiiieeiiieeiieeeiiee ettt ettt e et e st e st e e e e s sabaeeeeennes 36
JOD_TUN_SCTIPL. c.teeeiiieeeiiieeetieeeiteeeieeeetee et eeeateeeateeeeteessaeesnsaeesnssneeeeesnnnsaeeeeans 36
ReESOUICE MaANQZEMENL....ccoviuuiiiiiiiiiieieiiee ettt et e e s eiteeeeee s 37
Basic command-1ine interface.............eovieriiiiiiiiiiiiiiieeeeeee et 37
Basic Web-Interface..........oouiiiiiiiiiiiee e 38
Python class INEIfaCe.c.ueiuiiiiiiiiiie e 38
REPOSTLOTIES . ..eeteieeiiie ettt ettt ettt e et e ettt e e sabeeeateeensaeesnsaeeenssnneeaeannns 39
Project Management.........cooouuiiiiiiiiiiiiiceeeeee e e e 41
SCREAUIET ...ttt et sttt et e e e e 42
Storage Within LGLL.......coooiiiiii e 42
Scaling Of LGL....coouiiiiieee ettt e 43
Spec files and RPMS......cocoooiiiiiiiiiecee et 45

EXAMPIE USET SESSIOMN.eiiiiiiiiiiiiiitie ettt ettt ettt et e sbeee s 46

Introduction:

“The Leiden Grid Infrastructure (LGI) is a framework that allows scientists to perform
computational tasks and store data with a common interface without needing to know
the details of the underlying systems. Moreover the infrastructure allows for a work
and load balancing of the underlying systems; The calculation will run on a machine,
being a resource within the grid, that can actually do the calculation. Data will be
stored again on a resource within the grid in whatever format the resource can handle
wherever there is place. Furthermore, with the LGI a scalable infrastructure is built
that can grow whenever the demand increases for more resources.”

The above stated general goal of the LGI can be implemented according to the
infrastructural design, made clear in this document. The design is based on
well-known and proven technologies.

Rationale:

Researchers and students of today cannot be expected to understand all the
technicalities involved in using a computer or storage device efficiently; each system
behaves differently in it's details and because the technologies involved in the
computational field are growing in such a rapid rate, keeping up with that knowledge,
together with keeping up with the scientific knowledge, is hard to do.

Past experiences on supercomputers and clusters has shown that on average such a
system is made redundant within 6 years. Often, when continuing present work on
newly made available systems, a lot of porting is involved and a detailed knowledge
of the technicalities of the new hardware is needed. Keeping current software running
in such a dynamic surrounding can be a rather time consuming job. Just think about
the new technologies like having your programs run in parallel, either using OpenMP
or MPI, or perhaps even both is the system allows for this... Also think about which
compiler and with what setting to use for your new hardware...

A general scientist should not be bothered with all of this, especially if it is known
that most of the software run on computers is usually compiled and set up by others,
and all this is often restricted to only a few general applications. The same rationale
applies to you own desktop system. You are probably using Windows, or perhaps
Linux. What software was installed and why do you use it? Count the number of
applications you use on a daily basis and see for how many of them you actually
compiled the application from sources yourself!

Nowadays, computers can be used far more efficiently, both from a user, and from a
management perspective, if the computers are part of a low-cost, perhaps application
specific, but a very scalable grid infrastructure based on proven technologies.

General design:

The general LGI design is given by the following figure;

applicatie :) project
web-portal java gul web-portal
KN I
‘-
.~ (external)
P authentication
https

—_— -
xml
over
https

—_-—

data over

ftp / ssh

——————— [

resourced | { 0+ | resource 3
(cluster) —I (storage)
] . ‘r
resource 2
(boinc)

For each project, any number of applications can be set up on any number of
resources. The application interface, a common interface for an application within a
project, communicates with any number of project servers. One project server is
designated to be the master project server.

The project servers are nothing more than machines running a web-service to a
general MySQL database with a known structure. The structure of the MySQL
database will be detailed upon in this document: i.e. each project server contains an
active list of all the resources within the LGI for that project and all the needed user
management information. The project, within this framework, is nothing more than a
specific MySQL database on each of the project servers. A single web-server machine
can therefore automatically handle multiple projects independently.

The communication between an application interface and the project server is based
on exchange of XML data over https using server- and client-certificates, all signed
by the Leiden Grid Infrastructure Central Authority (LGI-CA). The LGI-CA is trusted

by all clients running application interfaces, all project servers and all resources
within the LGI.

The application interfaces queue calculation- or storage-jobs into any of the project
server databases. This is done by requesting the project's master web-server to get a
list of project server databases. This allows for a round-robin load balancing over
these project servers, if desired. An application interface can also monitor the
completion of these jobs and depending on the details of the project, queue as much
work as is allowed according to the users credentials. The user management for the
project application can be implemented in the application interface itself but can also
be set up on each of the project server database. The project servers only accept
application interface clients with a valid LGI-CA singed certificate.

Application interfaces can be implemented in any programming language available as
long as they communicate over https, using client- and server-certificates, all signed
by the LGI-CA and adhere to the web-services offered by the project servers.

Resources, on the other end in this design, are nothing more than computers capable
of doing calculations or storing data. A resource is identified with an unique resource
name. In the project's master web-server an active resource table exists which couples
the unique resource name to an user account on the resource (by using i.e. a

'somers @teras.sara.nl' type URL) and to it's LGI-CA signed certificate, which in turn
contains the public part of the RSA key-pair of the resource, as usual. The unique
name of the resource is also put into the client-certificate as the common name. More
details on the use of certificates is given below.

A resource essentially runs a resource daemon in user-space and regularly polls the
master and slave web-servers, perhaps even for different projects, to see if it is
capable of performing any of the queued tasks for an application that was previously
set up on that specific resource. The communication again makes use of XML over
https, again with server- and client-certificates, all signed by the trusted LGI-CA.
This allows for the project servers to identify requests through the verified
client-certificates it receives.

The resource is regarded to be out of the administrating domain of the LGI; the owner
and administrator of the resource can decide for which project's it will do what sort of
work and for which users or groups of users for each of those project's applications.
The resource daemon runs usually as a non-privileged user on the resource and has
only a limited access to the resources available on the resource. This construct allows
for, for example, regular user accounts on super-computers to be set up as a resource
within the LGI for that specific project, user or group of users. More details on the
resource daemon implementations are given in the following sections.

Within this design, storage and file transfers can be dealt with similar to
computational tasks; storing a file is regarded to be a running 'file storage' job in the

mailto:'somers@teras.sara.nl

project server. It can be queued (only by a resource) for a specific resource, identified
through the unique resource name within the project, or for any storage resource that
is capable of storing the data in one way or the other. More details on how storage can
be implemented in LGI are given below.

Database structure:

As is clear from the previous two sections, the project server, and with it the database,
plays a central role in the LGI. A general and sound design of it's structure is therefore
of out-most importance. In this part of the document some details on that matter are
presented.

The project server contains a MySQL database for each project it might serve for. The

name of the database is taken to be equal to the project name. In the project database
the following tables are defined;

1) The table job_queue';

field data type

job_id integer
state string
application string
owners string
read_access string
write_access string
target_resources string
input blob
output blob
job_specifics string
lock_state integer
state_time_stamp integer
daemon_pulse integer
priority integer

This table shows the state for each job in the project server. It contains the 'job_id'
assigned to the job, it's 'state', for what 'application' it is, for which 'target_resources',

which groups or users are the 'owners' of the job, which groups or users have
'read_access' and which have 'write_access'. Only users and groups listed in the
‘'write_access' field can modify the job. The 'owners' field is used for accounting. If the
'target_resources' contains “any”, any capable resource can pick up the job. The
'owners', 'read_access' and 'write_access' fields are comma separated values and can
contain the “any” keyword.

The 'job_specifics' may contain extra details on the specific job in XML format. It
might contain extra scheduling information, specific to the application and the
target_resources. The resource can decide to accept the job based on information
present in that string. Currently the project server will insert tags here for a repository
explained below. The 'input' and 'output' fields are general input and output fields. The
interpretation of these fields depend on the application in question. They need not be
used.

The 'state_time_stamp' is the time this job went into the state it currently is. The
"lock_state' field is used to signal a lock on this specific job. If the number is non-zero
positive, an entry in the 'running_locks' table should be present. Details on the locking
mechanisms are given below.

The 'daemon_pulse' field is used to mark the last time a daemon checked the status of
the job and the "priority" field is used to deliver quality of service. Currently the
'priority’ field is set equal to the submit time implementing a FIFO scheduling
priority. A scheduler can change this 'priority' if desired.

2) The table 'running_locks',

field data type
lock_id integer
job_id integer
resource_id integer
lock_time integer
session_id integer

This table will contain all the current running locks on the jobs of the 'job_queue'
table for each session of resources. If a job in the 'job_queue' table is locked by a
resource in a session, the 'lock_state' is a positive non-zero number in the job_queue'
entry and an entry in this table is present. The UNIQUE ‘job_id' indicates for which
job in 'job_queue' this lock is, the 'resource_id' indicates, through the
'active_resources' table below, which resource has locked the job at what time, which
is specified by 'lock_time' and the 'session_id' indicates what session of the resource
has locked the job. The 'resource_id' field has been taken to be a signed integer to

allow for interfaces locking jobs too: a lock with 'resource_id'=-1 and 'session_id'=0 is
a lock from an interface rather than a resource. Details on the locking mechanisms are
given below.

3) The table 'active_resources";

field data type
resource_id integer
resource_name string

resource_capabilities | string

client_certificate blob
last_call_time integer
project_server integer
url string

This table contains the currently signed-up resouces within the LGI for this specific
project. The 'last_call_time' keeps track of the last time this resource has accessed this
web-server. The 'project_server' defines what sort of project server the resource is; 0 =
no project server, 1 = master project server , 2 = slave project server. The 'url' field
specifies the location, on the web, and under what user account this resource, on the
resource itself, is part of the grid. The 'client_certificate' contains a copy of the
resource's certificate. Be sure to use correct naming convention for the resources:
'username @somemachine.org'. The 'resource_capabilities' XML field contains extra
information the resource daemon has sent to the server during signing-up. The extra
information is found from the daemon configuration.

4) The table 'running_sessions';

field data type
session_id integer
resource_id integer
session_time_stamp integer

This table stores all the running sessions of all the resources. The 'session_id' uniquely
identifies the session for the resource with id 'resource_id', The 'sessions_time_stamp'
is a time value that is reset at each web request for which the resource needs a full
session. If a session has timed-out for more than 30 minutes, the locks of that session
are removed and the session itself is quited by the project server. Any service to the

mailto:'username@somemachine.org

resource, for that specific session, is the denied.

5) The table 'users_allowed';

field data type
user_name string
application string
job_limit integer

This table contains users who are granted access to the project server. If a specific
user is not in this list, the record with the user_name equal to “any”

can be used for the specific application, however, in that case the groups setting are
first checked. The application entry can also be set to “any” to allow access to all
applications within the project. If no such “any” 'user_name' is present in the list, the
requesting user should be denied any service.

If the 'job_limit' value is negative, it specifies the maximum number of 'running' and
'queued’ jobs this user is allowed to have for the application on this project server. If
the number is positive it specifies the total number of jobs this user is allowed to have
on this project server, whatever the state. If the number is zero, there is no limit.

User settings always overrule all group settings, unless the “any” user record was used
and a specific group record is present in the 'groups_allowed' table.

6) The table 'groups_allowed';

field data type
group_name string
application string
job_limit integer

This table contains the groups who are granted access to the project server. If a
specific group is not in this list, the group should be denied any service for the
specific application. This can be overruled by allowing for an “any” group. For
application the “any” name can also be specified. However, in that case, the user
tables are first consulted to check if there was no “any’ user defined.

If the 'job_limit' value is negative, it specifies the maximum number of 'Tunning' jobs
this group is allowed to have for the application. If the number is positive it specifies
the total number of jobs this group is allowed to have. If the number is zero, there is

10
no limit.

Group settings are always overruled by user settings.

7) The table 'users_denied';

field data type
user_name string
application string

This table specifies which user is denied service for an application. This table
overrules the 'users_allowed' and 'groups_allowed' tables. If the application is set to
“any”, all service will be denied. The “any” 'user_name' is also allowed in this table.

8) The table 'groups_denied',

field data type

group_name string

application string

This table specifies which group is denied any service for an application. This table
overrules the 'user_allowed' and 'groups_allowed' tables. If the application is set to
“any”, all service will be denied. The “any” group can also be present in the table.

9) The table 'updates';

field data type
version integer
servers string
update_query blob

This table contains all the updates this project server knows about. Each update is
identified by a non-zero positive version number. If the update was intended for the
specific server, listed in the comma separated 'servers' field, the 'update_query' has
been applied to this servers project database. Only sequential updates are performed.
Updates not intended for this server are still logged into this table. Because update
version numbers are global to all project servers, updates should only be performed on
the master project server even if they only apply to slave servers.

11

10) The table 'event_queue';

field data type
event_time_stamp integer
event string

This table is used to register and queue events for the project. Each time a job is
added, changed state, or deleted, an event is scheduled. The table is also used to
schedule a future event. The 'event_time_stamp' is the time at which the event is
scheduled and 'event' is a string identifying the event itself. The default event

'schedule_cycle' will signal the scheduler a schedule cycle is needed. See below.

Resource interfacing with the project server:

In this part the API between the project server and a resource is detailed upon.

The web-interface to a project server will be implemented in php and by using XML
data transfer over https, using client- server-certificates. Using these certificates, the
resource can be identified through the 'common name' field in the certificate. All
requests are made by passing data to the php scripts through the POST method. All
responses from the project server will be wrapped into “<LGI> <response>
</response> </LGI>” XML tags.

As of version 1.31 of LGI, two version number tags have been added designating the
LGI project server version '<LGI_version> </LGI_version>' and the API version
'<API_version> </API_version>'.

If an error condition has occurred during the request, a “<error> <number> 1
</number> <message> Back-off </message> </error>" type of response is generated.
The non-zero positive numbers, enclosed in the “<number> </number>" tags,
constitutes an error and has with it a corresponding message within the “<message>
</message>" tags.

If a server is overloaded it should respond with the above 'back-off" error message.
The resource should then try to look for the “<timeout> N </timeout>" tags, within
the “<error> </error>" message and wait for at least N seconds before trying again. It
could also decide to try and request a different project server in the mean-time.

If a resource, not present in the web-servers 'active_resources' table does a request, an
error is returned and service is denied. Also if the certificate of a resource does not
match the one stored in the 'active_resources' table, service will be denied.

12

The following requests can be made to the web-server. They are listed under the
'resources' directory on the project server's main URL. For example
“https://fwnc7003.leidenuniv.nl/L.Gl/resources/resource signup resource.php”.

1) The request 'resource_signup_resource';

This request is made by the resource prior to any use of the project's web-services. It
allows the project server to setup a new session. The session number, which uniquely
identifies this session, will be returned in the response and future requests should
include that session id in their request when a full session is needed for that request.
This request only needs the unique identifier of the resource, which is taken from the
certificate's common name field, and the 'project' name, which is POSTed. It is
possible to POST the 'capabilities' field to. If this XML field is posted, the
'resource_capabilities' record in the database is updated with this information.

The response, when an error occurred, on this request is an “<LGI> <response>
</response> </LGI>" encapsulated error, as described above.

For a valid response, extra information can be placed by the web-server if needed,
also encapsulated within the “<LGI> <response> </response> </LGI>" tags.
Currently only the list of project's slave web-servers are exported by using the
“<project_server number=x> url </project_server>" tags in which x is the logical
number of the slave server. The total number of servers is also exported in the
“<number_of_slave_servers> N </number_of_slave_servers>" tags.

An example response is given below:

<Ld >
<CA certificate> http://ww LG .org/LG-CA crt </CA certificate>
<server_nmax_fiel d_size> 65355 </server_nmax_field_size>
<Ld _version> 1.31 </Ld _version>
<API _version> 1.31 </ APl _version>
<response>
<resource> mark@ estresource. somewere. nl </resource>
<resource_url > </resource_url >
<resource_capabilities> <hello_world> nothing </hello_world>
</resource_capabilities>
<proj ect> testproject </project>
<proj ect_master_server> https://fwnc7003.1eidenuniv.nl/testnmasterserver
</ proj ect _naster_server>
<this_project_server> https://fwnc7003.1eidenuniv.nl/testslaveserver
</this_project_server>
<nunber _of _sl ave_servers> 2 </ nunber_of _sl ave_servers>
<proj ect_server nunber='1">
https://fwnc7003. | ei denuniv.nl/testslaveserver </project_server>
<proj ect _server nunber='2'>
https://fwnc7003. | ei denuniv.nl/testslaveserver2 </project_server>
<session_id> 101 </session_id>
</ response>
</ LG >

https://fwnc7003.leidenuniv.nl/testslaveserver2
https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testmasterserver
https://fwnc7003.leidenuniv.nl/LGI/resources/resource_signup_resource.php

13
2) The request 'resource_signoff_resource';

This request is made by the resource to signal the end use of the project's web-services
for the session identified through the posted 'session_id' field. It allows the project
server to unlock any stale locks this resource might have on jobs in the project
database and to kill the session it had with the resource. This request needs the unique
identifier of the resource, which is taken from the certificate's common name field,

the 'project' name, and the 'session_id" which should all be POSTed. The response
generated to this request is exactly the same as described in the above
'resource_signup_resource' request.

3) The request 'resource_request_work';

This request is made by a resource that seeks for work to be done. If an unregistered
resource does the request, the request will be ignored and an error response will be
send back, as was previously described. A valid session of the resource is required to
be able to serve this request.

The common name field of the resource certificate is used to identify resource doing
the request. The 'session_id', 'application' and the 'project' fields are set by a POST.
The POSTing of the 'start' and 'limit' fields are optional in this request. If these fields
are not POSTed, a default 'limit' of 10 will be used and if not POSTed, the 'start' is set
to 0. If the 'limit' field was POSTed and is 0, a count of the number of jobs will be
returned only and no jobs will be locked in that case.

The 'owners' field is optionally POSTed and allows for specifying a comma separated
list of owners work is going to be allowed or denied for by the resource. Owner
strings staring with the '!" are owners that will be denied work by the resource.

The web-server will query the 'job_queue' table, of the 'project’ table in it's database
for unlocked jobs with an offset of 'start’ in the 'queued' state for the requesting
resource. It will take the possibly POSTed 'owners' into account. It will generate locks
for these rows on the fly as is described below and will respond with the XML data
enclosed in the “<LGI> <response> </response> </LGI>" tags.

The response will have a “<number_of_jobs> N </number_of_jobs>" section that
gives the amount of jobs returned in the response or the count of the number of
'queued’ jobs available in the database. It will also have details on the requesting
resource, project, the application of the request and the server's involved.

For each job in the response the “<job number=x> </job>" tags are used with x set
equal to the logical number of the job in the response. Within these “<job> </job>"
tags, the job_id', 'owners', the 'read_access', 'write_access', 'state_time_stamp',

'the_job_specifics', and 'target_resources' are also specified. An example of a valid

14

response 1is:

<Ld >
<CA certificate> http://ww. LA .org/LE-CA.crt </CA certificate>
<server_max_field_size> 65355 </server_nex_field_size>
<Ld _version> 1.31 </Ld _version>
<API _version> 1.31 </ APl _version>
<r esponse>
<start> 0 </start>
<limt> 10 </limt>
<resource> mark@ estresource. somewere. nl </resource>
<resource_url> </resource_url >
<resource_capabilities> <hello_worl d> nothing </hello_world>
</resource_capabilities>
<proj ect> testproject </project>
<proj ect_master_server> https://fwnc7003.1eidenuniv.nl/testnmasterserver
</ proj ect _naster_server>
<this_project_server> https://fwnc7003.1eidenuniv.nl/testslaveserver
</this_project_server>
<session_id> 102 </session_id>
<appl i cation> testapp </application>
<nunber _of _j obs> 3 </ nunber_of _j obs>

<j ob nunber="'1'>
<job_id> 140 </job_id>
<target_resources> testresource </target_resources>
<owner s> mark </ owners>
<read_access> mark, theor, sara, cyttron </read_access>
<write_access> mark, theor </wite_access>
<state_tine_stanp> 1259926661 </state_time_stanp>
<j ob_specifics> <nprocs> 2 </ nprocs> <di sk> 5G </ di sk> <nmen> 64G
</ mene <repository>
repo@wnc7003. | ei denuni v.nl:/mt/sdbl/ LA /trunk/repository/JOB_000f 61825f f 3f 59¢736d737
612e25e3d </repository> <repository_url>
https://fwnc7003. 1 ei denuniv.nl/LGA /repository/e3d/ JOB_000f 61825f f 3f 59c736d737612e25e3d
</repository_url> </job_specifics>
</j ob>

<j ob nunber='2'>
<job_id> 142 </job_id>
<target_resources> testresource </target_resources>
<owner s> freek, cyttron </owners>
<read_access> cyttron </read_access>
<write_access> freek </wite_access>
<state_tine_stanp> 1259927661 </state_time_stanp>
<j ob_specifics> <nprocs> 1 </ nprocs> <di sk> 5G </ di sk> <menr> 64G
</ men® <repository>
repo@wnc7003. | ei denuni v.nl:/mt/sdbl/ LA /trunk/repository/JOB 010f 61825f f 3f 59¢736d737
612e25e3d </repository> <repository_url>
https://fwnc7003. | ei denuniv.nl/LG /repository/e3d/ JOB_010f 61825f f 3f 59¢736d737612e25e3d
</repository_url> </job_specifics>
</ j ob>

<j ob nunber='3' >

<job_id> 147 </job_id>

<target_resources> any </target_resources>

<owner s> sjoerd, cyttron </owners>

<read_access> any </read_access>

<write_access> cyttron </wite_access>

<state_tinme_stanp> 1259936661 </state_time_stanp>

<j ob_specifics> <nprocs> 1 </ nprocs> <di sk> 2G </ di sk> <menr> 64G
</ men®> <repository>
repo@wnc7003. | ei denuni v.nl:/mt/sdbl/ LA /trunk/repository/JOB_200f 61825f f 3f 59¢736d737
612e25e3d </repository> <repository_url>
https://fwnc7003. 1 ei denuniv.nl/LGA /repository/e3d/ JOB_200f 61825f f 3f 59¢736d737612e25e3d
</repository_url> </job_specifics>

</ j ob>
</ response>

</Ld >

mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl
https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testmasterserver

15

The project server automatically sorts the jobs for the response according to the
'priority’ field of the job and implements a basic FIFO scheduling algorithm as the
field is initialized with the submit time stamp. A scheduler can change this to offer a
different quality of service. See below.

The resource daemons should now inspect the individual jobs in the response and
decide to accept the job or reject it. When the resource decides to reject it, it should
unlock this job so other resources can have a look at it. If it does decide to run the job,
it should change the state of the job to running' and request the details of the job as
explained below.

4) The request 'resource_request_job_details';

This request is made to the project server to retrieve the full information for a job
identified through it's 'job_id'. The resource is again identified through the certificate
and only if the resource is known and has a running lock on the job, this request is
served. The 'job_id' is again POSTed together with the 'session_id' because running
session with the resource is needed for this request to be able to serve. The response is
very similar to the above described response, the extra information of the 'input’,
'output’, 'application’, 'repository_content' and the 'state' are now also returned. The
'input' and 'output' blobs are encoded into a hexadecimal (BinHex) notation so they
can be transferred in the XML format over https. An example response is:

<L3@ >
<CA certificate> http://ww. LA .org/LA-CA. crt </CA certificate>
<server_max_field_size> 65355 </server_nex_field_size>
<Ld _version> 1.31 </Ld _version>
<API _version> 1.31 </ APl _version>
<response>
<resource> mark@ estresource. somewere. nl </resource>
<resource_url > </resource_url >
<resource_capabilities> <hello_worl d> nothing </hello_world>
</resource_capabilities>
<proj ect> testproject </project>
<proj ect_master_server> https://fwnc7003.1eidenuniv.nl/testmasterserver
</ proj ect _naster_server>
<thi s_project_server> https://fwnc7003.1eidenuniv.nl/testslaveserver
</this_project_server>
<session_id> 1 </session_id>
<j ob>

<job_id> 147 </job_id>

<appl i cation> testapp </application>

<state> runni ng </state>

<target_resources> any </target_resources>

<owner s> sjoerd, cyttorn </ owners>

<read_access> sjoerd, any </read_access>

<read_access> sjoerd </read_access>

<state_tine_stanp> 1259936661 </state_time_stanp>

<j ob_speci fics> <repository>
repo@wnc7003. | ei denuni v.nl:/mt/sdbl/ LG /trunk/repository/JOB_000f61825ff3f 59¢736d737
612e25e3d </repository> <repository_url>
https://fwnc7003. | ei denuniv.nl /LA /repository/e3d/ JOB_000f 61825f f 3f 59¢736d737612e25e3d
</repository_url> </job_specifics>

<i nput > CDEF9021569C8787E </i nput >

<out put > </ out put >

<repository_content> <file nunber="1"> <fil e_name> hi

mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl
https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testmasterserver

16

</file_nanme> <size> 1024 </size> <date> 1662626 </date> <nunber_of files> 1
</ nunber _of _files> </file> </repository_content>
</j ob>
</ response
</ LA >

5) The request 'resource_lock_job',

This request is made to the project server to lock a job in the 'job_queue' table. The
resource is identified through the certificate, the 'job_id' together with the 'session_id'
1s POSTed and the lock will only be set if the job has not been locked before by any
other resource and if the job's 'target_resources' contains “any’ or the requesting
resource name. If the resource is unknown, this service is again denied and an error
response is returned. A successful respond will be in the “<lock> </lock>" tags
wrapped XML, with details of the lock:

<Ld >
<CA certificate> http://ww. Ld .org/LE-CA.crt </CA certificate>
<server_nmax_fiel d_size> 65355 </server_nax_field_size>
<Ld _version> 1.31 </Ld _version>
<API _version> 1.31 </ APl _version>
<r esponse>
<resource> mark@ estresource. somewere. nl </resource>
<resource_url> </resource_url >
<resource_capabilities> <hello_world> nothing </hello_world>
</resource_capabilities>
<proj ect> testproject </project>
<proj ect_naster_server> https://fwnc7003.1ei denuniv.nl/testmasterserver
</ proj ect _naster_server>
<this_project_server> https://fwnc7003.1eidenuniv.nl/testslaveserver
</this_project_server>
<session_i d> 103 </session_i d>
<job_id> 104 </job_id>
<l ock>

<l ock_i d> 10020 </l ock_id>
<job_id> 104 </job_id>
<l ock_tinme> 127657651276 </l ock_ti ne>
<session_id> 103 </session_id>
<resource_id> 3 </resource_i d>
</ ock>
</ response>
</LG >

If the lock cannot be set, an error response is sent back, as described previously. The
resource should now wait and try again later.

6) The request 'resource_unlock_job';

This request is made to the project server to unlock a previously set lock on a job.
Again the resource is identified through the certificate and both the 'job_id' and the
'session_id' should be POSTed. The lock will only be removed if the resource is
known and had originally locked the job, or a job was locked for the resource through
the 'resource_request_work' request. The response of a successful call again is
embedded into the “<lock> </lock>" tags:

https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testmasterserver

17

<Ld >
<CA certificate> http://ww. LA .org/LE-CA. crt </CA certificate>
<server_max_field_size> 65355 </server_nex_field_size>
<Ld _version> 1.31 </Ld _version>
<API _version> 1.31 </ APl _version>
<response>
<resource> mark@ estresource. somewere. nl </resource>
<resource_url> </resource_url >
<resource_capabilities> <hello_worl d> nothing </hello_world>
</resource_capabilities>
<proj ect> testproject </project>
<proj ect_master_server> https://fwnc7003.1eidenuniv.nl/testnmasterserver
</ proj ect _naster_server>
<this_project_server> https://fwnc7003.1eidenuniv.nl/testslaveserver
</this_project_server>
<session_id> 103 </session_i d>
<job_id> 104 </job_id>
<l ock>

<l ock_i d> 10020 </l ock_i d>
<job_id> 104 </job_id>
<unl ock_tine> 127657651276 </unl ock_ti nme>
<session_id> 103 </session_id>
<resource_id> 3 </resource_i d>
</l ock>
</ response>
</ LG >

7) The request 'resource_update_job',

This request is made to the server to alter some of the fields of a job. The job should
be locked by the resource before this request is allowed. The resource should have a
running session too. The 'job_id' and the 'session_id' should be POSTed together with
fields that can be altered; 'state', 'target_resources', 'input’, 'output’ and 'job_specifics'.
If any of these fields need changing, the new data should be POSTed. The server
automatically adjusts the 'state_time_stamp' field if needed. The response of the server
is the final data the job record will contain, as described by the 'resource_job_details'
requests response. The 'input' and 'output' data POSTed should be first BinHexed and
the server should un-BinHex them.

8) The request 'resource_submit_job',

This request is made by a resource to insert a new job into the project server database.
Again a running session is needed for this request. The fields needed for this request
are 'session_id', 'state', 'application’, 'owners' and 'target_resources'. The other fields,
'read_access', 'job_specifics', 'input' and 'output’, can also be POSTed if needed.

The server will check if any of the POSTed 'owners' are allowed to submit a job for
the specific 'application'. If not, an error response is returned. The 'owners' credentials
are checked against the 'users_denied', 'groups_denied', 'users_allowed' and
'groups_allowed' tables. Only the subset of the 'owners' that is allowed to submit a job
will become part of the jobs 'owners'.

https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testmasterserver

18

If the credentials are in order, the job is inserted into the database and automatically
will be locked by the project server for the resource, identified through the client
certificate. The 'job_id" will be determined by and the 'state_time_stamp' will also be
initialized by the server.

If the 'read_access' data was not POSTed, it will be set equal to the 'owners' by the
server. The same applies to 'write_access'. During the submission of the job, this
routine automatically creates a repository for the job. Files uploaded to the server are
automatically moved into the repository directory and the correct job_specifics tags
“<repository> </repository>" and “<repository_url> </repository_url>" are added.
Read more about the repositories below. Files can be uploaded by POSTing the
variable “number_of_uploaded_files” to specify the number of files being uploaded.
Each file is given a POST name like “uploaded_file_ XXX with XXX being an
integer.

The response is again equal to the response obtained from the server in the
'resource_job_details' request. The resource can check this data, if needed, change
fields by issuing an 'resource_update_job' request and finally do the
'resource_unlock_job' request.

9) The request 'resource_job_state';

This request is made by the resource to get the state of a job, identified through the
job_id' being POSTed. This request is only served if the known resource, identified
through the certificate, is present in the 'target_resources' list of the job, or if this field
contains the “any” resource. The response by the server is very similar to the one
obtained by issuing the 'resource_job_details' request. The difference is that the 'input
, 'output’ and 'repository_content' fields are now not reported and that the job need not
be locked prior to the request. Neither does the resource need to have a running
session for this request. An example of a valid response is thus:

<Ld >
<CA certificate> http://ww. LA .org/LE-CA.crt </CA certificate>
<server_max_field_size> 65355 </server_max_field_size>
<Ld _version> 1.31 </Ld _version>
<API _version> 1.31 </ APl _version>
<response>
<resource> mark@ estresource. somewere. nl </resource>
<resource_url> </resource_url >
<resource_capabilities> <hello_world> nothing </hello_world>
</resource_capabilities>
<proj ect> testproject </project>
<proj ect_master_server> https://fwnc7003.1eidenuniv.nl/testnmasterserver
</ proj ect _master_server>
<this_project_server> https://fwnc7003. 1| eidenuniv.nl/testslaveserver
</this_project_server>
<j ob>

<job_id> 147 </job_id>

<application> testapp </ application>
<state> runni ng </state>

<target _resources> any </target_resources>
<owner s> sjoerd </owners>

https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testmasterserver

19

<read_access> any </read_access>

<write_access> any </wite_access>

<state_tinme_stanp> 1259936661 </state_time_stanp>

<j ob_speci fics> <repository>
repo@wnc7003. | ei denuniv.nl:/mt/sdbl/ LA /trunk/repository/JOB_000f 61825f f 3f 59¢736d737
612e25e3d </repository> <repository_url>
https://fwnc7003. 1 ei denuniv.nl/LGA /repository/e3d/ JOB_000f 61825f f 3f 59¢c736d737612e25e3d
</repository_url> </job_specifics>

</ j ob>
</ response>

</Ld >

This request can be issued to monitor a change in state of a job by the resource. This
can be used to detect an 'aborting' state issued by an application interface. This request
also updates the 'daemon_pulse' field of a job.

10) The request 'resource_request_resource_data',

This request is made by the resource to get the certificate details of another resource.
The compulsory field resource_name' should be POSTed to be able to serve this
request. The resource in again identified through it's certificate and is allowed to
POST the 'project’ field too. The certificate is reported in BinHexed format and no
session 1s needed to serve this request. The response to this request looks like:

<LG@ >
<CA certificate> http://ww. Ld .org/LE-CA.crt </CA certificate>
<server_max_field_size> 65355 </server_nex_field_size>
<Ld _version> 1.31 </Ld _version>
<API _version> 1.31 </ APl _version>
<response>
<resource> mark@ estresource. somewere. nl </resource>
<resource_url> </resource_url >
<resource_capabilities> <hello_worl d> nothing </hello_world>
</resource_capabilities>
<proj ect> testproject </project>
<proj ect_master_server> https://fwnc7003.1eidenuniv.nl/testnmasterserver
</ proj ect _naster_server>
<this_project_server> https://fwnc7003.1ei denuniv.nl/testslaveserver
</this_project_server>
<request ed_resource_dat a>
<client_certificate> OF1206AC5D ... 1B4D6E </client_certificate>
<resource_url> mark@fwnc7003. 1 ei denuniv.nl <resource_url>
<l ast_cal | _time> 1287876287 </l ast_call _tine>
</ request ed_r esour ce_dat a>
</ response>

</Ld >

Job locking mechanism:

Because in the LGI several resources can request work form the project server, and
decide for them selves, based on the 'job_specifics' field to perhaps accept the work
for the application, a locking mechanism is needed. If a resource decides to inspect the
job, another resource should not in the mean-time decide to run the job or else a
race-condition is met.

mailto:mark@ffwnc7003.leidenuniv.nl
https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testmasterserver
mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl

20

The locking mechanisms in the LGI will be implemented per job and a resource is
only allowed to work on a job entry of a project database if the resource has
successfully locked that specific job prior to use. Moreover, the project's web server
will refuse to serve 'resource_request_work' requests to the resource if a lock exists in
the 'running_locks' table for that resource session. If somehow a resource fails to
unlock the job after a while, the project servers will unlock the jobs that where locked
and kill the session it had and the resource should setup a new session with the project
server by signing up again.

When the 'resource_request_work' request is made, the project's server follows the
following steps to ensure a correct and safe locking mechanism; The requesting
resource name is taken from the client-certificate it presents. It will check if the
resource is registered and had a valid session running. If the resource was not
registered or has no valid session, an error response is returned. Otherwise, a query is
run on the 'running_locks' table for the project to see if there are any lock currently
running for that resource in the current session. If so, again an error is returned.

If no locks were present on any jobs for this session and resource, the 'job_queue'
table is queried for the specific resource for unlocked jobs (lock_state<=0), for the
requested application, being in the 'queued' state. A limit is set to this request and
results are sorted according to the 'priority’ field. For each job a lock is now requested
for this resource by increasing the 'lock_state' field, by trying to insert a 'running_lock'
entry for this resource, session and job (the job_id' field is UNIQUE in the
Tunning_locks' table). It will also set the current time as the 'lock_time' in the
'running_locks' table. If the insert fails, the 'lock_state' is decreased again and the job
is then ignored and not put into the response. If the insert succeeded, a lock was
acquired. The job is then inspected more thoroughly by the 'resource_request_work'
code to see if no other resource has already claimed this job (state is still 'queued’, this
resource is still allowed and listed in the 'target_resources' field and the 'lock_state'
field is equal to 1. If it has not been claimed yet, it will be put into the response. If it
was claimed already, it will be ignored and unlocked again. This locking mechanism
avoids table locks that thwart scaling and concurrency.

When a request is made by a resource to unlock a job, the resource is first identified
and checked if it had a lock on the job in this session. If it did, the corresponding entry
in the 'rTunning_locks' table is removed before the 'lock_state' of the job in the
‘job_queue' is decreased.

Because of the extensive locking mechanisms implemented in LGI, no replication and
MySQL proxy load-balancing techniques should be used. See below for more details
when a project needs to scale up. Also special effort has been taken to make the
locking algorithms scale for concurrency by avoiding full table locks and optimizing
the number of queries needed.

21

Application interface interfacing with the project server:

In this section the communication between an application interface and the project
servers is detailed upon. In general the URL used to communicate between a resource
and the project server can be different than the URL used by the application interfaces
that also communicate with the project server. For resources there is no need to check
the user and group access control lists of the database (the 'user_allowed',
'user_denied', 'group_allowed', 'group_denied' tables), a resource is identified through
it's certificate, usually resources interact differently and perhaps more frequent with
the project server than users do. Moreover, by logically separating the web-servers for
resources and application interfaces, extra scaling possibilities are introduced.

In general, all communications between the application interface and the project
server need user credentials in the request. Also all communication is done in XML
over https, using client certificates, signed by the LGI-CA, but now with
common-names fields within the certificates being equal to the user credentials. See
the later section on certificates for details on this.

The user credentials need to be checked for each request and only jobs, for which the
user has access to, through the 'owners', 'write_access' and 'read_access' fields, can be
changed and inspected respectively.

Again all responses by the server are to be wrapped into the “<LGI> <response>
</response> </LGI>" tags. If an error condition is met, the response will contain the
usual “<error> </error>" tags embedded XML messages.

The following requests can be made by the application interface to the project server.
They are listed under the 'interfaces' directory on the project server's main URL. For
example “https://fwnc7003.leidenuniv.nl/LGl/interfaces/interface_submit_job.php”.

1) The 'interface_submit_job' request;

This request is done by an application interface to submit a job. The user is identified
through the certificate's common-name field and by the POSTed 'user' and 'groups’
fields. The POSTed 'user' field should equal the certificates common-name or
otherwise service is denied. Further certificate checks that might be done are
described below. The other compulsory fields that also need to be POSTed in this
request are the 'application' and the 'target_resources' fields. The 'input’, the
job_specifics', the 'write_access' and 'read_access' fields are not compulsory but can
be POSTed too.

If both the 'write_access' and 'read_access' fields were not POSTed, they will be set to
the 'users' field. The 'target_resources' is checked to contain valid resources, known to
the project and with the 'application' configured, or the “any” resource. The

22

‘application' field is also checked for in the database. The 'input' field, when needed, is
again POSTed in BinHex format, which is again un-BinHexed by the server.

A new job will created by the server, based on the above described values of POSTed
fields. The default state of the job will be the 'queued' state. During the submission of
the job, this routine automatically creates a repository for the job. Files uploaded to
the server are automatically moved into the repository directory and the correct
job_specifics tags “<repository> </repository>" and “<repository_url>
</repository_url>" are added. Read more about the repositories below. Files can be
uploaded by POSTing the variable “number_of_uploaded_files” to specify the
number of files being uploaded. Each file is given a POST name like
“uploaded_file_XXX” with XXX being an integer. Clearly the other fields will be set
by the server and a response to the application interface will contain the POSTed
details:

<Ld >
<CA certificate> http://ww. LG .org/LG-CA crt </CA certificate>
<server_max_fiel d_size> 65355 </server_max_field_size>
<Ld _version> 1.31 </Ld _version>
<API _version> 1.31 </ APl _version>
<response>
<proj ect> testproject </project>
<proj ect_master_server> https://fwnc7003.1eidenuniv.nl/testmsterserver
</ proj ect _naster_server>
<thi s_project_server> https://fwnc7003.|eidenuniv.nl/testslaveserver
</this_project_server>
<user> mark </user>
<groups> teras, cyttron </groups>
<j ob>

<job_id> 147 </job_id>

<application> testapp </ application>

<stat e> queued </state>

<target_resources> any </target_resources>

<owner s> sjoerd, cyttron </ owners>

<read_access> any, sjoerd, cyttron </read_access>

<write_access> sjoerd, cyttron </wite_access>

<state_tine_stanp> 1259936661 </state_time_stanp>

<j ob_specifics> <nprocs> 2 </ nprocs> <di sk> 5G </ di sk> <nmen»> 64G
</ men®> <repository>
repo@wnc7003. | ei denuniv.nl:/mt/sdbl/ LA /trunk/repository/JOB_000f 61825f f 3f 59¢736d737
612e25e3d </repository> <repository_url>
https://fwnc7003. 1 ei denuniv.nl/LGA /repository/e3d/ JOB_000f 61825f f 3f 59c736d737612e25e3d
</repository_url> </job_specifics>

<repository_content> <file nunber="1"> <fil e_name> h
</file_nane> <size> 1024 </size> <date> 1662626 </date> </file> <nunber_of files> 1
</ nunmber_of _files> </repository_content>

<i nput > CDEF9021569C8787E </i nput >

</j ob>
</ response>
</ LG >

2) The 'interface_job_state' request;

This request is made by the application interface to obtain information on the queue
contained in the project server database. Again the 'user' and 'groups' field should be
POSTed and the common-name of the client certificate should match the POSTed
'user’ field. This request has two ways of generating an response, depending on

mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl
https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testmasterserver

23

whether the 'Job_id' field is POSTed or not. In case the 'job_id' is not POSTed, the
response will be a list of current jobs in the database, based on a selection by the
possible POSTed 'application’ and 'state' fields. Only jobs in which the POSTed 'user’
or any of the 'groups' is part of the 'read_access' will be returned. In the response, the
number of listed jobs will be wrapped into the “<number_of_jobs>
</number_of_jobs>" tags. A valid response looks like:

<Ld >
<CA certificate> http://ww. LA .org/LE-CA.crt </CA certificate>
<server_max_field_size> 65355 </server_max_field_size>
<Ld _version> 1.31 </ LA _version>
<API _version> 1.31 </ APl _version>
<r esponse>
<proj ect> testproject </project>
<user> mark </user>
<groups> teras, cyttron </groups>
<project_master_server> https://fwnc7003.1eidenuniv.nl/testnmasterserver
</ proj ect _mast er_server >
<this_project_server> https://fwnc7003. 1| eidenuniv.nl/testslaveserver
</this_project_server>
<nunber _of _j obs> 3 </ nunber_of _j obs>

<j ob nunber='1'>
<job_id> 140 </job_id>
<state> queued </state>
<appl i cation> testapp </application>
<state_tine_stanp> 1259926661 </state_time_stanp>
<target_resources> testresource </target_resources>
<owner s> nark </ owners>
<read_access> theor, sara, cyttron </read_access>
<write_access> nark, theor </wite_access>
<state_tine_stanp> 1259926661 </state_time_stanp>
<j ob_speci fics> <nprocs> 2 </ nprocs> <di sk> 5G </ di sk> <men»> 64G
</ men® <repository>
repo@wnc7003. | ei denuni v.nl:/mt/sdbl/ LA /trunk/repository/JOB 000f 61825f f 3f 59¢736d737
612e25e3d </repository> <repository_url>
https://fwnc7003. | ei denuniv.nl /LA /repository/e3d/ JOB_000f 61825f f 3f 59¢736d737612e25e3d
</repository_url> </job_specifics>
</j ob>

<j ob nunber='2'>
<job_id> 142 </job_id>
<state> runni ng </state>
<application> testapp </ application>
<state_tine_stanp> 1259927661 </state_time_stanp>
<target_resources> testresource </target_resources>
<owner s> mark </ owners>
<read_access> theor, sara, cyttron </read_access>
<write_access> mark, theor </wite_access>
<state_tine_stanp> 1259926661 </state_time_stanp>
<j ob_speci fics> <nprocs> 3 </ nprocs> <di sk> 4G </ di sk> <menr> 64G
</ men®> <repository>
repo@wnc7003. | ei denuniv. nl:/mt/sdbl/ LA /trunk/repository/JOB 010f 61825f f 3f 59¢736d737
612e25e3d </repository> <repository_url>
https://fwnc7003. | ei denuniv.nl/LG /repository/e3d/ JOB_010f 61825f f 3f 59¢736d737612e25e3d
</repository_url> </job_specifics>
</ j ob>

<j ob nunber='3' >
<job_id> 147 </job_id>
<state> finished </state>
<appl i cation> testapp </application>
<state_tinme_stanp> 1259936661 </state_ti me_stanp>
<target_resources> testresource </target_resources>
<owner s> mark </ owners>
<write_access> mark, theor </wite_access>
<read_access> theor, sara, cyttron </read_access>

mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl
https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testmasterserver

24

<state_tinme_stanp> 1259926661 </state_ti me_stanp>

<j ob_specifics> <nprocs> 1 </ nprocs> <di sk> 1G </ di sk> <men»> 64G
</ men®> <repository>
repo@wnc7003. | ei denuni v.nl:/mt/sdbl/ LG /trunk/repository/JOB_100f 61825f f 3f 59¢736d737
612e25e3d </repository> <repository_url>
https://fwnc7003. | ei denuniv.nl /LA /repository/e3d/ JOB_100f 61825f f 3f 59¢736d737612e25e3d
</repository_url> </job_specifics>

</ j ob>
</ response>

</ LA >

In this mode, it does not matter if the jobs reported have running locks or not. If the
POSTed 'limit' field has a value of 0, a count of the number of jobs found is returned

9% &6

only. Also, in this mode, the “<repository_content> </repository_content>", “<input>
</input>" and “<output> </output>" information is not present.

If the request was made with a specific job_id' field POSTed, the response will be
more elaborate for the specific job only:

<Ld >
<CA certificate> http://ww. LA .org/LA-CA. crt </CA certificate>
<server_max_field_size> 65355 </server_nex_field_size>
<Ld _version> 1.31 </Ld _version>
<API _version> 1.31 </ APl _version>
<response>
<proj ect> testproject </project>
<user> mark </user>
<groups> teras, cyttron </groups>
<proj ect_master_server> https://fwnc7003.1eidenuniv.nl/testmmasterserver
</ proj ect _naster_server>
<thi s_project_server> https://fwnc7003.1eidenuniv.nl/testslaveserver
</this_project_server>
<nunber _of _jobs> 1 </ nunber_of _j obs>
<job_id> 140 <job_id>

<j ob nunber=1>

<job_id> 140 </job_id>

<state> queued </state>

<application> testapp </ application>

<target_resources> testresource </target_resources>

<owner s> mark </ owners>

<read_access> theor, sara, cyttron </read_access>

<state_tinme_stanp> 1259926661 </state_time_stanp>

<j ob_specifics> <nprocs> 2 </nprocs> <di sk> 5G </di sk> <nmen> 64G
</ men®> <repository>
repo@wnc7003. | ei denuni v.nl:/mt/sdbl/ LG /trunk/repository/JOB_000f61825ff3f59¢736d737
612e25e3d </repository> <repository_url>
https://fwnc7003. | ei denuniv.nl /LG /repository/e3d/ JOB_000f 61825ff 3f 59¢c736d737612e25e3d
</repository_url> </job_specifics>

<i nput > DCEF18982 </i nput >

<out put > </ out put >

<repository_content> <file nunber="1"> <fil e_name> hi
</file_nane> <size> 1024 </size> <date> 1662626 </date> </file> <nunber_of files> 1
</ nunber_of files> </repository_content>

</ j ob>
</ response>

</Ld >

29 ¢

Now the “<input> </input>”, “<output> </output>" and “<repository_content>
</repository_content>" information is included in the response.

If the possible POSTed 'job_id' is not present in the database, or the 'user', or any of
his 'groups' is not part of the 'read_access' fields of the job, service is denied and an

mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl
https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testmasterserver
mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl

25

error response is returned. Also if the specific job has a lock running, an error
response is sent back after the time-out period of 30 seconds has passed. During this
time-out period the server waits for the lock to be cleared before a response is
generated and sent back.

3) The 'interface_delete_job' request;

This request is made by an application interface to remove a job from the project
server database. Again the 'user' and 'groups' fields should be POSTed and the 'user’
field should match the certificate. Now also POSTed is the job_id' of the job that is to
be killed or deleted. If the 'user’, or any of the 'groups' is not part of the 'write_access'
field of the job with the POSTed "job_id', service is denied and an error response is
sent back.

If the user credentials match and the job with the POSTed "job_id'" is in the 'finished',
‘aborted' or 'queued' state, the job can be safely removed from the database if no locks
are present on the job. If the job was locked an error response is sent back after a
certain time-out. During the time-out of 30 seconds, the server waits for the lock to be
freed first.

If the job was in any other state than 'queued’ or 'finished', the job is set into the
‘aborting' state and not removed from the database, only if no lock is active on the job.
The 'aborting' state allows the resource that is currently dealing with the job, to detect
the abort signal. The resource will then set the job into the 'finished' or 'aborted' state
when possible. Whether the resource can abort a job immediately is highly dependent
on the application and the resource it is running on. Again, if the job is still locked
after the preset time-out period of 30 seconds, an error response is sent back.

If the job was successfully removed from the database, or has been set into the
‘aborting' state, the response of the servers is similar to the response obtained by the
'user_job_state' request described above:

<Ld >
<CA certificate> http://ww. LA .org/LE-CA.crt </CA certificate>
<server_max_field_size> 65355 </server_max_field_size>
<Ld _version> 1.31 </Ld _version>
<API _version> 1.31 </ APl _version>
<r esponse>
<user> mark </user>
<groups> teras cyttron </groups>
<proj ect> testproject </project>
<project_master_server> https://fwnc7003.1eidenuniv.nl/testnmasterserver
</ proj ect _mast er_server >
<this_project_server> https://fwnc7003.1eidenuniv.nl/testslaveserver
</this_project_server>
<j ob>

<job_id> 140 </job_id>

<state> aborting </state>

<appl i cation> testapp </application>
<target_resources> testresource </target_resources>
<owner s> mark </ owners>

<read_access> theor, sara, cyttron </read_access>
<write_access> theor </wite_access>

https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testmasterserver

26

<state_tinme_stanp> 1259926661 </state_ti me_stanp>

<j ob_speci fics> <repository>
repo@wnc7003. | ei denuni v.nl:/mt/sdbl/ LA /trunk/repository/JOB _000f 61825f f 3f 59¢736d737
612e25e3d </repository> <repository_url>
https://fwnc7003. 1 ei denuniv.nl/LGA /repository/e3d/ JOB_000f 61825f f 3f 59¢c736d737612e25e3d
</repository_url> </job_specifics>

</j ob>
</ response>

</ Ld >

This response allows the application interface to record or log jobs if desired.

4) The 'interface_project_server_list' request;

This request is made to get a list of project servers for a specific project. The 'user' and
‘groups' field are POSTed and compared to the clients-certificates common-name. If
they do not match an error response is returned and service is denied. If the credentials
are met, a valid response will contain a list of project servers:

<Ld >
<CA certificate> http://ww LG .org/LG-CA crt </CA certificate>
<server_max_fiel d_size> 65355 </server_max_field_size>
<Ld _version> 1.31 </Ld _version>
<API _version> 1.31 </ APl _version>
<response>
<user> mark </user>
<groups> teras cyttron </groups>
<proj ect> testproject </project>
<proj ect_master_server> https://fwnc7003.1eidenuniv.nl/testnmasterserver
</ proj ect _naster_server>
<this_project_server> https://fwnc7003.1eidenuniv.nl/testslaveserver
</this_project_server>
<nunber _of _sl ave_servers> 2 </ nunber_of _sl ave_servers>
<proj ect_server nunber="1'>
https://fwnc7003. | ei denuniv.nl/testslaveserver </project_server>
<proj ect_server nunber='2'>
https://fwnc7003. | ei denuniv.nl/testslaveserver2 </project_server>
</ response>

</Ld >

The application interface can now choose what project server to communicate to to
submit or query about jobs.

5) The 'interface_project_resource_list' request;

This request is made to get a list of resources available for a specific project. The
'user' and 'groups' field are POSTed and compared to the clients-certificates
common-name. If they do not match an error response is returned and service is
denied. If the credentials are met, a valid response will contain a list of resources with
some of the details on each resource:

<Ld >
<CA certificate> http://ww. LA .org/LA-CA. crt </CA certificate>
<server_max_field_size> 65355 </server_nex_field_size>
<Ld _version> 1.31 </Ld _version>

https://fwnc7003.leidenuniv.nl/testslaveserver2
https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testmasterserver
mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl

27

<API _version> 1.31 </ APl _version>
<r esponse>
<user> mark </user>
<groups> teras cyttron </groups>
<proj ect> testproject </project>
<proj ect_naster_server> https://fwnc7003.1ei denuniv.nl/testmasterserver
</ proj ect _naster_server>
<this_project_server> https://fwnc7003.1eidenuniv.nl/testslaveserver
</this_project_server>
<nunber _of _resources> 2 </nunber_of _resources>
<resource nunber="1">
<resource_nanme> mark@wnc7003. | ei denuni v. nl </resource_nanme>
<resource_capabilities> <hello_world> </hello_world>
</resource_capabilities>
<l ast_cal |l _time> 1990282828 </l ast_call _tine>
</resource>
<resource nunber="'2'>
<resour ce_name> somers@uygens. sara.nl </resource_name>
<resource_capabilities> <hello_world> </hello_world>
</resource_capabilities>
<last_call _time> 1990272828 </last_call _tine>
</resource>
</ response>
</ LG >

The application interface can now choose what resource to target.

Project server synchronization API:

In this part of the document the API that deals with the communication between two
or more project servers within a single project is detailed upon. This API has been
developed to allow for project servers to exchange updates to keep all servers within a
project synchronized.

Each project server within a project is identified as being a resource that has the
'project_server' field set to non-zero in the 'active_resources' table of all the project
servers. A project server is therefore also identified through a resource
client-certificate signed by the LGI-CA.

Updates are queries that can be executed on the project server's database. Each update
is identified by an integer 'version' number and only sequential updates are allowed.
Each update will be logged into the 'updates' table.

Again all responses by the server are to be wrapped into the “<LGI> <response>
</response> </LGI>" tags. If an error condition is met, the response will contain the
usual “<error> </error>" tags embedded XML messages.

The following requests can be made by any other project server within the project to
the project server. They are listed under the 'servers' directory on the project server's
main URL. For example

“https://fwnc7003.leidenuniv.nl/LGl/servers/server get update.php”.

https://fwnc7003.leidenuniv.nl/LGI/servers/server_get_update.php
file:///home/mark/LGI/docs/m@huygens.sara.nl
mailto:mark@fwnc7003.leidenuniv.nl
https://fwnc7003.leidenuniv.nl/testslaveserver
https://fwnc7003.leidenuniv.nl/testmasterserver

28
1) The 'server_get_update' request;

This request allows for any project server to inquire this server for the presence of
possible updates. The requesting server is identified through it's certificate common
name. Only if the requesting server is listed as a project server, this request can be
met. An error response is returned otherwise.

The compulsory 'version' and 'project' fields are POSTed and identify the requesting
server's latest update. If the server has any updates with a higher version number in
the 'updates' table, it will report the first sequentially applicable update the requesting
server should apply or log into it's own 'updates' table. A valid response looks like:

<L3@ >
<CA certificate> http://ww. Ld .org/LA-CA.crt </CA certificate>
<server_max_field_size> 65355 </server_max_field_size>
<Ld _version> 1.31 </Ld _version>
<API _version> 1.31 </ APl _version>
<response>
<proj ect> testproject </project>
<proj ect _master_server> https://fwnc7003.1eidenuniv.nl /LG
</ proj ect _nmaster_server>
<t hi s_project_server> https://fwnc7003.|eidenuniv.nl /L3
</ this_project_server>
<requesting_project_server> https://fwnc7003.|eidenuniv.nl/Ld2 </
requesting_proj ect _server>
<requesting_project_server_version> 0
</ requesting_project_server_version>
<updat e>
<updat es> 2 </updat es>
<updat e_versi on> 1 </ update_versi on>
<target_servers> any </target_servers>
<updat e_query> 0002020010002AB3 </ updat e_query>
</ updat e>
</ response>

</ Ld >

If there are no relevant updates, the above response will contain “<updates> 0
</updates>" and the latest version number encountered in the database is reported
within the “<update_version> </update_version>"" tags.

2) The 'server_run_update' request;

This request allows for any other project server within the project to push an update to
this server. For this to work the 'version', 'servers' and 'update' fields together with the
‘project’ fields should be POSTed. If the server has any updates higher than the
POSTed version, it will ignore this update being pushed and return it's highest version
number within the “<update_version> </update_version>" tags. If this server should
sequentially apply or log this update, it will do so. If this server has to apply other
updates first, an update cycle is started. If the 'version', 'servers' and 'update’ fields
were not POSTed, also an update cycle is started. A valid response, when an update is
being pushed, looks like:

https://fwnc7003.leidenuniv.nl/LGI2
https://fwnc7003.leidenuniv.nl/LGI
https://fwnc7003.leidenuniv.nl/LGI

29

<Ld >
<CA certificate> http://ww. LA .org/LE-CA. crt </CA certificate>
<server_max_field_size> 65355 </server_nex_field_size>
<Ld _version> 1.31 </Ld _version>
<API _version> 1.31 </ APl _version>
<response>
<proj ect> testproject </project>
<proj ect_master_server> https://fwnc7003.1eidenuniv.nl /LG
</ proj ect _naster_server>
<this_project_server> https://fwnc7003.1eidenuniv.nl/LG
</this_project_server>
<requesting_project_server> https://fwnc7003.1eidenuniv.nl/Ld2 </
requesting_proj ect _server>
<updat e_versi on> 1 </update_versi on>
<target_servers> any </target_servers>
<updat e_query> 0102030405011 </ update_query>
<updat e>
<updat e_versi on> 1 </update_versi on>
</ updat e>
</ response>

</Ld >

During an update cycle, each of the marked servers is requested to report back any
possible update. For this a POST to the 'server_get_update' API routine is performed
on each server. If all updates have been applied and all project servers have been
polled, the update cycle is finished. A valid response after such an update cycle looks
like:

<Ld >
<CA certificate> http://ww. LG .org/LG-CA crt </CA certificate>
<server_max_fiel d_size> 65355 </server_max_field_size>
<Ld _version> 1.31 </Ld _version>
<API _version> 1.31 </ APl _version>
<response>
<proj ect> testproject </project>
<proj ect _master_server> https://fwnc7003.1eidenuniv.nl /LG
</ proj ect _mast er_server >
<thi s_project_server> https://fwnc7003.1eidenuniv.nl /LG
</this_project_server>
<requesting_project_server> https://fwnc7003.1eidenuniv.nl/LE2 </
requesting_proj ect _server>
<updat e>
<updat e_versi on> 1 </update_version>
</ updat e>
</ response>

</ LG >

Certificates.:

Within the LGI heavy use is made of x509 server- and client-certificates. This part of
the document details on the 'CommonName' field of these certificates and how they
are used within the LGI. For actually managing your project certificates one could use
TinyCA (http://tinyca.sm-zone.net/).

For certificates belonging to resources the '‘CommonName' contains possibly two
fields separated by a ';'. The first field specified the resource unique name which is
also present in the 'active_resources' table. The naming convention for resources is

http://tinyca.sm-zone.net/
https://fwnc7003.leidenuniv.nl/LGI2
https://fwnc7003.leidenuniv.nl/LGI
https://fwnc7003.leidenuniv.nl/LGI
https://fwnc7003.leidenuniv.nl/LGI2
https://fwnc7003.leidenuniv.nl/LGI
https://fwnc7003.leidenuniv.nl/LGI

30

“user @machine.org”. The second field is a comma separated field of all the projects
this resource has access to. These fields within the certificate always take precedence
to any other access rules implemented in the project server or fields posted to the
project server. Resources always supply a valid client-certificate to the project servers.

For certificates belonging to users or application interfaces, the 'CommonName'
possibly contains three fields separated by a ';'. The first field is the name of the user
that accesses the project server through the application interfaces API. Also for
interfaces and users the naming convention is “username @location.org”. The possible
present second field is either a comma separated field with all the groups the user is
allowed to belong to or again a comma separated field with all the projects the user is
allowed to interface to. If only two fields separated by a';', the second field is the list
of projects the is allowed to interface to. Application interface's always supply a valid
user's client-certificate to the project servers.

Certificates used when configuring Apache for project servers are just normal x509
certificates in which the 'CommonName' has the correct fully qualified hostname of
the server. The scheduler however uses another x509 certificate with the same
convention for the '‘CommonName' as a resource certificate. Read 'SETUP.txt' for
more information on this.

It is however possible for resources and project server-certificates to only use the fully
qualified hostname as the commonname. Chosing to do so, resource management
through the x509 certificates is not possible anymore and it is also not possible
anymore for a single host to run several independent resource deamons with unique
identities. Multiple resource daemon instances on a single host can however run
independently using the same simple hostname based identity if and only if they all
have the same 'capabilities' and each monitor a separate 'run_directory' directory. See
below.

Resource daemon:

In this section a more detailed description of the resource daemon is given, which by
default, runs as a non privileged user on the resource. The resource daemon is
configured by a configuration file. This file has also uses the XML format and the
workings of the resource daemon is best described using the following example
configuration:

<Ld >
<ca_certificate file> ../certificates/LG +CA crt </ca_certificate file>
<r esour ce>
<resource_certificate file> ../certificates/laptop.crt
</resource_certificate_file>
<resource_key file> ../certificates/|aptop.key </resource_key_file>
<run_directory> ./runhere </run_directory>

mailto:username@location.org
mailto:user@machine.org

31

<owner _al | ow> <any> 10 </any> </owner_al | ow>
<owner _deny> </ owner _deny>
<job_limt> 20 </job_limt>

<nunber_of _projects> 1 </ nunber_of _projects>

<proj ect nunmber='1'>
<proj ect_name> LG </ project_name>
<proj ect_master_server> https://fwnc7003.1eidenuniv.nl/LG
</ proj ect _naster_server>

<owner _al | ow> <any> 5 </any> </owner _al | ow>
<owner _deny> </ owner _deny>
<job_limt> 10 </job_linmt>

<nunber _of _applications> 1 </ nunber_of _applications>

<appl i cation nunber="1">
<application_name> hello_world </application_name>

<owner _al | ow> <any> 1 </any> </owner _al | ow>
<owner _deny> </ owner_deny>

<job_limt> 4 </job_linmt>
<max_out put _si ze> 4096 </ max_out put_si ze>

<j ob_sandbox_ui d> 50001 </job_sandbox_ui d>
<capabilities> nothing special </capabilities>

<check_system|imts_script>
./hello_world_scripts/check _systemlimts_script </check_systemlimts_script>
<job_check_limts_script>
./hello_world_scripts/job_check |imts_script </job_check limts_script>
<j ob_check_runni ng_scri pt >
./hello_world_scripts/job_check_running_script </job_check_running_script>
<j ob_check_fi ni shed_scri pt>
./hello_world_scripts/job_check_finished_script </job_check_finished_script>
<j ob_prol ogue_scri pt>
./hello_world_scripts/job_prol ogue_script </job_prol ogue_scri pt>
<job_run_script>./hello_world_scripts/job_run_script
</job_run_script>
<j ob_epi | ogue_scri pt >
./hello_world_scripts/job_epilogue_script </job_epilogue_script>
<j ob_abort_script>
./hello_world_scripts/job_abort_script </job_abort_script>
</ application>
</ proj ect >

</ resource>
</Ld >

The resource daemon reads the the above illustrated configuration from the supplied
configuration file. Before running any further, the daemon verifies all the tags of the
configuration. Files referred to should be readable and exist, directories specified
should be readable and also exist, all the above illustrated tags should be present and
SO on.

After the daemon has verified the configuration, the configuration is stored in memory
and used as long as the daemon is active. Changes to the configuration file can be
made active by restarting the daemon. To stop the daemon, when it is running in the
background, a simple 'kill' command can be used to let the signal handler of the
daemon to gracefully shut down the daemon. Any open sessions to any server are then
guaranteed to be finished before the daemon is stopped.

32

The daemon will also generate a log. The logging level of the daemon can be supplied
at the command line when the daemon is started. At the same time, the configuration
file is supplied together with the option whether or not to daemonize and run in the
background. If the daemon receives a SIGHUP signal, it will reload the configuration
file and restart the logging.

Below are listed the options that the daemon supports:

./ LA _daenon. x [options] configfile

options:

-d daenoni ze and run in background.

-q log only critical nessages.

-ft time specify fast schedule cycle tinme in seconds. default is 120.

-st time specify slow schedul e cycle tine in seconds. default is 600.

-n | og nornal nessages. this is the default.

-V al so | og debug nessages.

-VV al so 1 og verbose debug nessages.

-W be | ess strict in hostnane checks of project server certificates.
-1 file use specified logfile. default is to log to standard out put.

The daemon can run as any user on the system and it is preferred to run the daemon as
an unprivileged user and not as root. If, however, the daemon is run as root, the
sandboxing of jobs is automatically enabled. In general a random special uid will be
used per job. Any script run for a job is correctly setuid to the random uid. One can
also override the randomization of uids per application by using the
“<job_sandbox_uid> </job_sandbox_uid>" tags in the configuration file.

In general, when the daemon has verified the configuration and is ready to run, the
'run_directory' directory is scanned through for cached jobs. This run directory
contains a tree of projects and applications and within each branch, the jobs for that
project and that application are cached on disk. Each job will have a unique job
directory in which the complete state of the job is stored. If the daemon runs as root
and the random uid sandboxing is used, care should be taken that the 'run_directory' is
world readable for any user. The daemon will make sure that the unique job
sub-directories are only accessible by the randomly chosen uid user.

The state of a job in its corresponding job directory is described by several files, all
beginning with an 'LGI_' prefix. Each such file contains exactly the same information
that is also stored in the projects web-server's database for that job or contains an
exact copy of the scripts that should be used for that application, as was specified in
the configuration file. Moreover, all the 'LGI_xxxxxx' files, except for the LGI_output
file, each has a corresponding "hash' file. In that file the hash fingerprint in
hexadecimal format is stored. If any of the files or scripts are corrupted, edited or
changed, the hash will make sure that this is detected. Scripts, for which the hash does
not match, will not be run. Job directories that contain a file for which the hash does
not match, will not be accepted and monitored. The following LGI_xxx files can be
used by the job scripts: 'LGI_project', 'LGI_this_project_server',
'LGI_project_master_server', 'LGI_application', 'LGI_job_id', 'LGI_owners',

33

'LGI_read_access', 'LGI_write_access', 'LGI_job_specifics', 'LGI_target_resources’,
'LGI_input', 'LGI_output', 'LGI_state', 'LGI_state_time_stamp',
'LGI_job_check_limits_script', 'LGI_job_check_running_script',
'LGI_job_check_finished_script', 'LGI_job_prologue_script', 'LGI_job_run_script',
'LGI_job_epilogue_script', 'LGI_job_abort_script', 'LGI_key_file',
'"LGI_certificate_file', "LGI_ca_certificate_file', 'LGI_max_output_size',
'LGI_job_sandbox_uid', 'LGI_job_run_script_pid' and 'LGI_daemon_reference'. Of
these only 'LGI_output' is allowed to be written to.

At the start of the daemon the run directory is scanned through for cached jobs. Any
job directory encountered and verified to be valid through the hashes, will be included
into the set of jobs that are to be monitored by the daemon. Only one instance of the
daemon can monitor a single run directory. When the daemon runs, every two minutes
the state of the jobs that are to be monitored, are checked by contacting the correct job
project server. If the job was issued on a slave server, only that slave server is
contacted by using the 'resource_job_state' function. If, during this update cycle, the
state in the database was changed, the job details are requested and the job directory
on disk is synchronized to the result of the post.

If, after an update cycle, the daemon reference stored in 'LGI_daemon_reference' does
not match the '<daemon_reference> </daemon_reference>' tags in the 'job_specifics',
this job is considered to be taken over by another daemon. The jobs scripts will be
used to gracefully kill the job. In this case the output and result of the job is ignored
and the job directory is cleared.

After having updated all jobs on disk, each job will be inspected through the
job_check_XXXX' scripts. These scripts were provided in the configuration file, but
are now also stored, with a hash, in the job directory too. This allows for a successful
completion of jobs even after the configuration file has changed the scripts for any of
these applications.

In general the job_check_running_script' script is started to check if the job is still
running. This script should return an exit code of zero to signal that the job is still
running. If the job was not found to be running, the 'job_check_finished_script' is
started to check if the job was finished. It also should return an exit code of zero if the
job was finished. If the job was found to be running, the 'state' of the job is checked. If
the 'state’ of the job was changed to 'aborting', the job_abort_script' script is run. If
then the job_abort_script returns an exit code of zero, the job is considered to be
aborted and the job details are again posted to the project server through the
'resource_update_job' function. After this successful post, the job is removed from the
list of jobs to be monitored and the corresponding job directory is deleted. The job
will end up in the 'aborted' state in the database on the project server. If the job was
not found to be finished or running, the run sequence of the job will be started; first
the job_prologue_script' is started and if that script returns an exit code of zero, the
'job_run_script' is started on the background.

34

If the job was found to be finished, because the 'job_check_finished_script' returned
an exit code of zero, the job_epilogue_script' script is started. If the
job_epilogue_script' script returns an exit code of zero, the job details will be posted
to the server. Again after a successful post, the job directory is removed, the job will
not be monitored again and the job will end up in the 'finished' state on the project
server's database.

The use of these 'job_XXXXX_scripts' allows the LGI resource user to fully
configure the way the application should be started and handled. Moreover, these
scripts can access any of the job details through the 'LGI_xxxxx' files also stored in
the job directory. Because these scripts are copied and hashed into the job directory, a
change in the configuration, or in the job scripts, will not affect any jobs prior to these
changes.

Apart from doing the above described job update cycle every two minutes, the
daemon also performs work request cycles every ten minutes or so. During this cycle
all the projects and applications that are specified in the configuration file are
inspected. The 'check_system_limits_script' script is used to see if there is a system
wide limit reached to running a job of this application. The script returns zero if no
limit is present and work can be requested by posting to the 'resource_request_work'
function on the project server.

All jobs offered by any of the project servers are inspected and checked against the
limits imposed by the 'owner_allow' and 'owner_deny' tags that were specified in the
configuration file. If any of the jobs 'owners' was specified in any of the
'owners_deny' tags, the job is not accepted. If a limit was specified for any of the
'owners' in the 'owner_allow', by wrapping the maximum number of jobs allowed for
that owner in tags of the owner: “<owner_allow> <mark> 2 </mark> <any> 1 </any>
</owner_allow>", the number of jobs currently being monitored is checked. If the set
limit would be exceeded, the job is ignored again. Only if none of the owners would
exceed any limits, the job will be checked further by running the
‘job_check_limits_script' script. The script will be run in a temporary job directory. If
this script returns an exit code of zero, no limit is present for the job and the job will
be accepted. The job will now be monitored and updated through the job update cycle
of the daemon. If the job didn't get accepted, the temporary job directory is removed.

For projects with multiple project (slave) servers, a list of servers is compiled first
during a work request cycle. Each of these servers is then requested to give work. The
list of project (slave) servers is obtained by first signing up at the server specified by
the 'project_master_server' tags in the configuration file.

The following example scripts are included for the 'hello_world' application
configured to be run through the TORQUE / PBS resource manager on a cluster:

check_system |imts_script:
#1/bi n/ sh
queued_in_smal | =" gstat -q small |
if (($queued_in_small < 1))
t hen
exit 0
el se
exit 1
fi

j ob_abort _script:
#! / bin/ sh
if [-f running]
t hen
| D="cat running’
FI NI SHED="gstat $ID 2> /dev/nul|"
if ["$FINISHED' == ""]
t hen
if [-f aborted]
t hen
exit O
fi
if [-f finished]
t hen
exit 1
el se
exit 1
fi
el se
qdel $ID
touch aborted
exit 1
fi
el se
exit 1
fi

j ob_check_finished_script:
#!1/ bi n/ sh
if [-f running]
t hen
| D="cat running’
FI Nl SHED="qgstat $I D 2> /dev/nul |
if ["$FINISHED' == ""]
t hen
if [-f aborted]
t hen
exit O
fi
if [-f finished]
t hen
exit 0
el se
exit 0
fi
el se
exit 1
fi
el se
exit 1
fi

job_check_limts_script:
#! / bi n/ sh
exit O

j ob_check_runni ng_script:
#! / bi n/ sh
if [-f running]
t hen
| D="cat running’

awk '/small/ { print $7 }'°

35

36

FI NI SHED="qgstat $I D 2> /dev/nul | °
if ["$FINSHED' == ""]

t hen

if [-f aborted]
t hen

exit 0

f
if [-f finished]
t hen
exit 1
el se
exit 1
f
el se
exit O
f
el se
exit 1
f

j ob_epi | ogue_script:
#!/ bi n/ sh
exit O

j ob_prol ogue_scri pt:
#!'/ bi n/ sh
exit 0

job_run_script:
#!/ bi n/ sh

cat > ./pbs_script << END _OF_PBS_SCRI PT
#PBS -S /bin/sh

#PBS -1 nodes=01: ppn=01, wal | ti ne=0: 15: 00
#PBS - N hel | o_wor | d_pbs

#PBS -0 LG _out put

NCDE=\ " host nane -f\"

sl eep 10

echo -n "Hello_Wrld_PBS running on node \${NODE} in directory \${PBS O WORKDI R} at "
sl eep 20

cat \${PBS_O WORKDI R}/ LG _t arget _resources

sl eep 40

echo -n ". This job was submitted with input:
sl eep 80

cat \ ${PBS_O WORKDI R}/ L4 _i nput

sl eep 160

echo "."

touch \ ${ PBS_O WORKDI R}/ f i ni shed
END_OF_PBS_SCRI PT

gsub pbs_script > ./running

An example configuration has been setup with the above scripts. Check the 'LGI.cfg'
configuration file and the other 'hello_world" scripts for even more examples on how
to configure the daemon or use different back-ends.

The actual daemon code is implemented in C++ and makes use of the Standard
Template Library (STL) and the cURL library. The source code can be found in the
'src' directory. There the file 'Makefile' is present and by issuing the 'make' command,
the code will be compiled. One can also run 'make clean' to clean up any makes
performed. A 'make install' will install the compiled binaries into the bin directory.
One can also issue a 'make uninstall'.

37

Resource management:

Within LGI it is possible to define an 'update' application capable of running perhaps
a bash script on each resource to manage each resource through LGI jobs remotely. To
this end the LGI_daemon reloads the configuration file and restarts logging when
receiving a SIGHUP signal.

Basic command-line interface:

Running 'make’' or 'make install' in the 'src' directory also makes the general
command-line interface and some tools available. In the 'src’ directory, apart from the
'Makefile' and some headers, the following source-files can be found:

bi nhex. cpp: contains the algorithms to convert binary to hexadecimal strings and
back.

CcSsv. cpp: contains the commma separated val ue parser for strings

hash. cpp: contains the hash algorithmfor strings

xm . cpp: contains the xm parser algorithms for strings

| ogger . cpp: contains the advanced |l ogging facilities.

resource_server_api.cpp: contains the 'project server' resource api functionality
in a class.

daenon_confi gcl ass. cpp: contains the class to read in and parse the
configuration file of the daenon

daenon_j obcl ass. cpp: contains the job directory handl er class for jobs.
daenon_mai ncl ass. cpp: contains the daenon main scheduling algorithns in a
cl ass.

daenon_mai n. cpp: is the main daenobn code that uses the above nentioned
cl asses.

hash_mai n. cpp: a tool to hash files

csv_nmai n. cpp: a tool to extract conma separated val ues

xm _mai n. cpp: a tool to parse xnml tags

hexbi n_nmai n. cpp: a tool to convert hex to bin.

bi nhex_nai n. cpp: a tool to convert bin to hex.

gstat _mai n. cpp: a tool to list jobs on project server.

gsub_mai n. cpp: a tool to submt a job to a project server

gdel _mai n. cpp: a tool to delete a job froma project server
filetransfer_nain. cpp: a tool to upload, download, list and delete files in

repositories.

All tools compiled through 'make' give details on their usage when the '-h' option is
passed. The tools are mostly self-explanatory. For the utilities LGI_filetransfer,
LGI_gstat, LGI_gsub and LGI_qgdel, the directory ~/.LGI can be setup to hold your
default configuration. These utilities also offer XML output through the '-x' option.
Please study the example session below to see how the command-line interface can be
setup and used. Also see the details below on repositories on how to use the
LGIL_filetransfer tool.

38

Basic web-interface:

A general and basic PHP implemented web interface can be found under the
'basic_interface' subdirectory. When a user loads a PKCS12 file containing his
certificate and private key into a browser, this basic interface allows the user to look at
his queue, delete jobs, submit jobs and request information on the project and the
specific project server. If you do not want this interface to be accessible on your
project server, adjust the Apache settings to deny access to this 'basic_interface'
subdirectory (see 'SETUP.txt').

Python class interface:

In the 'python' subdirectory, through the 'LGIL.py' file, the 'LGI_Client' python class is
available for your python scripts. With this class you can communicate with an LGI
project server from your script. This interface is available as of version 1.26 of LGI.
An example script on how to use the class:

#! [/ usr/ bi n/ pyt hon

This is a sinple test code to denonstrate the use of the LA interface class. Al
nmet hods are being used and briefly explained. Methods that return a response of

the project server, return a dictionary with the XML content of the response. This
allows for easy access to paraneters, as shown below. Tags transfered in bi nhex
format within LA (input and output) are autonmtically converted. File uploads and
downl oads froma repository are transfered streamng and the LG _Client class can be
be setup to run as an interface client or as a repository client as shown bel ow.

H R HHHHH

i mport LG ;

create a client instance with defaults read in from"~/.LA"
Cient = LA.LA _dient();

subnmit a job with sonme input for the hello_world application at the same tinme upl oad
afile

JOB = dient.SubmtJob(Application = "hello_world", Input = "haydihay", FileList =

[“/etc/resolv.conf"]);

extract job_id fromthe response dictionary
job_id =JOB['LA"']['response’]['job'"]["job_id 1];

extract the repository url fromthe response dictionary
repository_url =JOB['LA"]['response']['job']['job_specifics']
["repository_url'];

setup an instance to access the repository
Fileient = LA.LA _Cdient(URL = repository_url);

print some stuff and run some tests
print JOB;

print

print Cient.GetJobList(State = '!finished);
print

print Cient.GetJobState(job_id);
print

print Cient.GetResourceList();

print

print Cient.GetServerList();

print

39

now play with the repository for a bit
print Filedient.ListRepository();

Filedient.DownlLoadFiles(["resolv.conf"], "/tmp");
Filedient.UpLoadFiles(["/etc/hosts", "/etc/fstab"]);
print

print Filedient.ListRepository();
FileClient.DeleteFiles(["hosts"]);
print

print Filedient.ListRepository();
print

finally just delete the job to clean up
print Cient.DeleteJob(job_id);

Repositories:

When a job is being submitted to LGI, the project server will automatically create a
repository for the job. The repository is a special directory on the project server (or an
other external storage server if desired) in which files can be uploaded to and
downloaded from. Applications running on resources can now use the repository to
download files from the repository and upload results to it. They should use the
LGI_filetransfer utility for this.

The actual location of the repository is specified in the 'jobs_specifics' field in the
database per job. It will contain two tags: “<repository> ... </repository>"" and
“<repository_url> ... </repository_url>". The first tag specifies where the project
server created the repository directory: “<repository>
repo@fwnc7003.leidenuniv.nl:/mnt/sdb1/LGl/trunk/repository/e3d/JOB_000f61825ff
3159¢736d737612e25e3d </repository>". The second tag shows where an interface or
the basic interface can download or browse the data; “<repository_url>
https://fwnc7003.leidenuniv.nl/L.Gl/repository/e3d/JOB_000f61825ff3t59¢736d73761
2e25e3d </repository_url>". It is the later URL for which the LGI_filetransfer utility
was written.

With the LGI_filetransfer utility files can be listed, downloaded, uploaded and deleted
from a repository:

/LA _filetransfer [options] comand repository-url [files]

comands:

l'ist list files present in specified repository.

downl oad downl oad files fromrepository.

upl oad upload files to repository.

delete delete files fromrepository.

options:

-h show this hel p.

- X output lists in XM format.

-c directory specify the configuration directory to read. default is
~/.LA . specify options below to overrule.

-j jobdirectory specify job directory to use. if not specified try

current directory or specify the follow ng options.
-W be |l ess strickt in hostnanme checks of project server

mailto:LGI@fwnc7003.leidenuniv.nl
mailto:LGI@fwnc7003.leidenuniv.nl

40

certificates.

-K keyfile specify key file.
-Ccertificatefile specify certificate file.
-CA cacertificatefile specify ca certificate file.

If an external repository server is desired, a project manager should make sure that on
his repository server the user repo' exists and that project servers are allowed to use
scp to transfer files in and out of the repository server without a password. This can be
accomplished by adding each project server's public ssh key into the
~/.ssh/authorized_keys file of the 'repo' user on the external repository server. The
public ssh key can be extracted from the x509 certificate and private key that was
created for the server by the project administrator: “ssh-keygen -y -f
LGI@fwnc7003.key”.

A project server should also be setup to handle repositories. This is done through the
'inc/Config.inc' where a project server is configured. Details on how to configure a
(slave) project server are given in the 'SETUP.txt' file.

On the repository server Apache should be configured to serve the repository
directory and only accept clients with correctly signed certificates. How to setup and
secure Apache to use certificates is also detailed upon in 'SETUP.txt". The default
sub-directory 'respository' already contains the needed CGI scripts and the .htaccess
files to correctly configure Apache. This setup is ready to be used for a local
repository on the project server itself.

The python class interface can also interact with a repository as is demonstrated
above.

Keep in mind, when using a EXT3 file system for repositories, the limit on the
number of directories is 32k. Use another file system or several project servers if you
need more entries. As of version 1.30 the project server repositories support a fan-out
directory layer of one level deep. This means that all jobs will have their repository
directories mapped into one of 4096 subdirectories. This increases the limit of jobs on
EXT3 repository file systems to more than 134 million.

The LGI_filetransfer utility communicates with a repository server using GET, POST,
PUT and DELETE requests. The PUT request, through the Apache CGI configuration
and the put.cgi perl script, allows for uploads of files. The DELETE request, again
through Apaches CGI configuration and the delete.cgi perl script allows for removal
of file from the repository. During uploads or deletes the ACLs are checked through
the '.LGI_repository_write_access' file present in each repository directory. This file
contains a comma separated list of identities allowed to upload into the repository or
delete files from it. These identities are matched to the credentials present in the x509
certificate used. When POSTing the 'repository' field to the repository_content.php
script an XML formated list of files present in the repository is returned wrapped into
“<repository_content> </repository_content>" tags as shown in the example
responses of some of the interface and resource API calls above. No extra ACLs are

file:///home/mark/LGI/docs/m@fwnc7003.key

41

checked for listing a repository, however, the precise (hard to guess) repository name
is only know to users allowed to read details of a job. When downloading from a
repository a normal GET request is used on the file to be downloaded. The Apache
configuration ensures valid certificates are being used by the client.

Project management:

As of version 1.22 of LGI a special database management tool has been added in the
'tools' subdirectory:

ManageDB {list|add|del} {users|groups|resources} {allowed|denied} [DB [HST
[USR [PWD]]]]

With this tool users, groups and resources can be easily added or deleted into the
project's database. At the same time, each change to the database is recorded as an
'update’ for the project into it's database. The tool is easily configured by editing the
first few lines and changing the default settings. The tool should only be used at one
instance of time and on the project master server only. Some examples:

ManageDB add users allowed exampleprojectname localhost examplemysqluser
examplemysqgluserpasswd

Enter user name: theusername
Enter application: hello world
Enter job limit: 10

Enter servers to update: any

ManageDB add resources allowed

Enter resource name: user@resource
Enter resource url: user@resource
Enter certificate file: resource.crt
Enter project server flag: 0

Enter servers to update: any

ManageDB add groups allowed

Enter group name: newgroup

Enter application: any

Enter job limit: -10

Enter servers to update: apachefexampleslaveserver.somewhere.org
ManageDB add users denied

Enter user name: baduser

Enter application: any

Enter servers to update: apachefexampleserver.somewhere.org
ManageDB list users allowed

user _name application job_limit

any hello world 2

For managing your project's certificates one could use TinyCA
(http://tinyca.sm-zone.net/).

http://tinyca.sm-zone.net/

42
Scheduler:

As of version 1.25 of LGI a scheduler is implemented on the project server. The
scheduler is event driven by the 'event_queue' table. This table lists the events
scheduled as was described above. Currently the scheduler is used to perform some
project tasks for the repository, to check if 'running' jobs are still actively monitored
by their daemons, to see if lingering daemon sessions are present and to check for
updates between the project servers. Future versions of the scheduler can implement
an advanced quality of service for jobs by altering the "priority' and the
'target_resources' fields of the jobs. To this end, any project server API routine that
alters the "job_queue' table schedules the 'schedule_cycle' default event and several
instances of the scheduler are allowed to run concurrently. The default scheduler is
based of 'first-in-first' for jobs together with 'first-come-first-serve' for resources. This
means resources, when able, will poll for jobs in 'first-in-first' order. However, extra
care has been taken to avoid users to claim all resources for a lengthy period of time.
Please study the 'scheduler/scheduler.php' code for more details.

Storage within LGI:

Within LGI storage is implemented, in theory, through for instance a 'file_storage'
application. A resource can implement such an application as desired by using the
correct scripts. The idea is that jobs storing data are submitted to LGI, any resource
capable of storing data accepts the job and retrieves the data to be stored through the
repository of the job. The resource scripts can now store the data internally in any way
they like, perhaps also remove the files from the job repository, keep a reference to
the project server, 'repository_url' and 'job_id' and offer a reference to the data storage
location through the job 'output' field. The job is now 'finished' as the data has been
stored (this also ensures that the daemon will not monitor the job anymore and no
processes are spawned for each 'running' storage job every now and then). The user
can access the data through the reference in the 'output' field of the job. If the user
deletes the job, the storage resource, in principle, will still retain the data. It can
however, if desired, remove internal data corresponding to jobs that are not present
anymore in the project server database by checking the project server for the status of
the job or just by checking the existence of the repository_url' of the job. It could also
automatically 'prune' data that has not been accessed for some time if desired as a
policy. Key part is that the data stored is accessible to the user (and nobody else)
through the reference put into the 'output' field of the 'file_storage' job.

All this can easily be implemented through an Apache server running an CGI
interface or any other type of dynamic web-page (PHP, Python, perl...), using the
x509 authentication of the LGI certificates. The reference to the data in the 'output’
field can now be a simple url to the CGI handler with an internal storage reference to
the data as an url-encoded parameter. Security can be implemented by making the

43

internal storage reference unguessable and hard to predict. The CGI handler can then
offer any type of interface to that data suitable to your needs.

Currently no example is provided using the above mechanism, but another very direct
storage solution using the project server repository is already possible. If a project
server administrator adds the '<file_storage> </file_storage>' tags into the capabilities
field of the project server in the 'active_resources' table; the LGI stack will accept jobs
for the 'file_storage' application, it will create a repository on the project server for
that job, and files can be uploaded, downloaded, listed and removed from that
repository as long as the job is in the database. In this way the storage of files can be
implemented quick-and-dirty on the project server without any extra implementations.

Scaling of LGI:

LGI has been designed from the ground-up to be scalable. Multiple project servers can
be used and easily managed and the resource daemons automatically take care of this
by first polling the project server they were configured with. Users can be forced to
use specific project servers through the user management options of LGI too. This
offers a very simple but robust (statically configurable) load balancing and scaling
option. If, however, scaling or load balancing is desired without extra project servers
in the LGI project, options are available and discussed below.

Extra effort was undertaken to make the LGI code scalable on all ends. The resource
daemons can only run single threaded, but several daemons can run concurrently on
the same resource as long as they use each a separate 'run-directory' directory. The
project server PHP code was extensively profiled and the first bottleneck was found to
be the number of https requests / ssl handshakes Apache can handle. This bottleneck
can be vastly reduced by using keep-alive / persistent connections and by using
smaller RSA keys (1024 bit). The resource daemon and interface clients provided by
LGI use persistent connections as much as possible to avoid extra ssl handshakes if
the project server is configured properly. The Apache configuration provided in
'SETUP.txt' has been tuned for high-performance and thus allows for persistent
connections. Depending on the amount of RAM and CPU power the project server
has, the number of jobs in the data base and how many resources or clients are hitting
your project server concurrently, the bottleneck most likely will now be the MySQL
back-end. Using servers with plenty RAM, cores and disks in a RAID10 configuration
thus always helps.

To scale the number of web-servers to handle even more https requests / ssl
handshakes on the project web-front-end (if needed), well-known techniques are
available. Several Apache servers can be load-balanced over by using iptable firewalls
(using a DNAT rule to a range of servers and an SNAT rule for correctly routing
packages back to the originating firewall for DNAT to work), by using DNS

44

round-robin directly to the servers or perhaps to the firewalls. All these web-servers
load-balanced over, will use the same MySQL back-end and x509 credentials. One
could also use an ssl accelerator card in the project server, but usually they are more
expensive than buying extra servers. You cannot use dedicated ssl accelerators
load-balancing and routing the https requests to http servers, the LGI PHP software
running on the servers requires the information present in the x509 certificates.

To scale the MySQL back-end, care should be taken. Again, it is better to run multiple
project slave servers for resource daemons to poll and users to submit to with
individual MySQL back-ends and storage. The resource daemons transparently take
care of this. Users, perhaps depending on what interface they are using, will have jobs
on different project web-front-ends unless the project administrator has implemented
otherwise through the user management options of LGI. !Using (multi-master)
replication, with MySQL proxy for instance, to scale the MySQL back-end is strongly
discouraged! The replication introduces a delay that leads to a race-conditions in the
job locking mechanisms of LGI. It is however possible to use a MySQL cluster
back-end with a distributed database over several nodes. In this configuration, each
web-front-end server (when using load-balancing across multiple web-servers) could
run a local MySQL server, connected to a shared pool of MySQL storage nodes
located within the same dedicated LAN. More information on this can be found at
http://www.mysqgl.com/products/cluster/. It is also possible to switch from the
MyISAM and InnoDB storage engines to the HEAP or MEMORY storage engine for
all tables. This will make MySQL faster but the database is only in RAM and not
stored on disk.

Extra care has already been taken to make the use of MySQL as efficient as possible:
tables concurrently accessed for writes use the InnoDB storage engine which
implements row locking so that table locks are avoided as much as possible, tables
have several indexes defined already to efficiently run the SELECT queries, no
JOINS are being used, the 'job_queue' table has been normalized and indexes are used
to sort the SELECTS on 'job_queue' rather than using ORDER BY. All queries have
been studied with EXPLAIN and performance under a fair load (~100k jobs with
~110 concurrent resources using daemon options '-ft 5 -st 10" and testing for ~1h) was
monitored with SHOW STATUS. It was found that, about 45% of the queries are
UPDATESs, INSERTSs or DELETE:s, all table locks were immediate,
'handler_read_rnd' was 0, no queries that took 5s or more were found and less than
0.01% of the queries took more than 1s, the 'max_used_connections' was found to be
105, 'open_tables' was 196 and 'threads_connected' 92 on average. Also, on average,
'qcache_hits' was two times bigger than 'qcache_inserts' and 'qcache_not_cached' was
25% of the total number of query cache lookups. These numbers have been obtained
running the suggested configuration of 'SETUP.txt' on a dual Xeon 3.0 GHz Nocona
EM64T machine with 4GB of DDRII 400MHz RAM using Scientific Linux 4.3 and
hyperthreading turned on. The load of that system during testing was found to be ~31
(85% user time, 15% system time) and MySQL was found to take about 15 to 50% of
CPU load. No swapping was seen on the system and the MySQL disk usage was

http://www.mysql.com/products/cluster/

45

~250MB and memory usage was about ~2.6GB (of which ~300MB was resident in
RAM). During these tests 4k RSA keys were used for the x509 certificates.

Furthermore, the PHP profiling showed that for interfaces, on average 4 queries are
performed per project server request (deleting jobs is the most expensive operation
and takes 7 queries) and for resources on average 7 queries are performed per project
server request excluding the requests for work (only 3 queries are performed when
checking the status of a job by a resource, but 9 if a job lock removal is requested by a
resource; the most expensive operations are locking, updating and unlocking jobs for
resources). Resources requesting for work on average took 134 queries.

To scale up a repository, also plenty of well-known techniques are available. One
could use GlusterFS storage using the web-front-end servers as storage bricks with
local RAID10 disks or traditional SAN with NFS techniques can be used. Key is that
all web-front-end servers being load balanced over in a project pool using a single
MySQL back-end have access to the same (distributed) storage transparently.
However, it is again advised to use several project slave servers with independent
MySQL back-ends and repository storage local to each server. Also keep in mind that
the EXT3 file system has a limit of 32k directory entries. The EXT4 file system has
no such limit. As of version 1.30 the project server repositories support a fan-out
directory layer of one level deep. This means that all jobs will have their repository
directories mapped into one of 4096 subdirectories. This increases the limit of jobs on
EXT3 repository file systems to more than 134 million.

Spec files and RPMs:

As of version 1.30 .spec files have been created to allow for easy deployment of all
components of LGI on RHEL based systems. Currently RPMs can be built for 1386
and x86_64 systems using RHEL (or derivatives like CentOS and Scientific Linux) 5,
6 and 7. In the specs subdirectory a script can be run to compile the latest LGI
software into 4 RPMs: LGI_cli, LGI_python, LGI_server and LGI_resource. These
RPMs automatically configure the system into a working project LGI or resource and
take care of dependencies. The RPMs can be compiled anywhere and are relocatable.
They also will offer LGI_daemon and LGI_server init scripts and log rotations. Take
note; the LGI_server rpm is an interactive rpm and is not designed to be installed
unattended.

46

Example user session:

In this part an example user session is demonstrated with the 'hello_world'
application.

mar k: : / home/ mar k>cd tenp/ LG /src/

mar k: : / hore/ mar k/ t enp/ LA / sr c>make

g++ - -c | ogger.cpp

g++ -2 -c resource_server_api.cpp

g++ - -c xm.cpp

g++ -2 -c csv.cpp

g++ -2 -c hash. cpp

g++ -2 -c binhex.cpp

g++ - -c daenon_configcl ass. cpp

g++ -2 -c daenon_j obcl ass. cpp

g++ -2 -c daenon_mai ncl ass. cpp

g++ -2 -c daenmon_mai n. cpp

g++ -2 -0 LG _daenon | ogger.o resource_server_api.o xm .o csv.o hash.o binhex.o
daenon_confi gcl ass. o daenon_j obcl ass. o daenon_mai ncl ass. o daenon_nain.o -l curl

g++ -2 -c xm _main. cpp

g++ -2 -0 xm xm .o csv.o xml _main.o

g++ -2 -c bi nhex_main. cpp

g++ -2 -0 binhex binhex.o binhex_main.o

g++ -2 -c hexbin_main.cpp

g++ -2 -0 hexbin binhex.o hexbin_main.o

g++ -2 -c hash_nain. cpp

g++ -2 -0 hash hash. o bi nhex.o hash_main.o

g++ -2 -c csv_main. cpp

g++ -2 -0 CSV CSV.0 CSv_mmin.o

g++ -2 -c filetransfer_main.cpp

g++ -2 -0 LG _filetransfer |ogger.o resource_server_api.o xm .o csv.o hash.o binhex.o
daenon_confi gcl ass. o daenon_j obclass. o filetransfer_main.o -1curl

g++ -2 -c interface_server_api.cpp

g++ -2 -c gstat_main.cpp

g++ -2 -0 LG _qgstat |logger.o interface_server_api.o xm .o csv.o binhex.o gstat_main.o
-lcurl

g++ -2 -c qgdel _main. cpp

g++ -2 -0 LA _qdel logger.o interface_server_api.o xm .o csv.o binhex.o gdel _main.o
-lcurl

g++ -2 -c gsub_main. cpp

g++ -2 -0 LA _qsub logger.o interface_server_api.o resource_server_api.o

daenon_j obcl ass. o daenon_configclass.o xm .o csv.o binhex.o hash.o qsub_main.o -Ilcurl
mar k: : / honme/ mar k/ t enp/ LA / src>make install

nkdir -p ../bin; cp LA _daenon xm binhex hexbin hash csv LG _filetransfer LG _gstat
L& _qsub LA _qdel ../bin

rm-rf ../daenon/bin; In -s ../daenmon/bin ../bin

mar k: : / horme/ mar k/ tenp/ LA / src>cd ../ daenon/ bin

mar k: : / hore/ mar k/ t enp/ LA / daenmon/ bi n>l s

bi nhex c¢sv hash hexbin LG _daemon LG _filetransfer LA _qgdel LG _qgstat LA _qgsub
xm

mar k: : / horme/ mar k/ t enp/ LA / daenon/ bi n>. /L

LG _daenon* LG _filetransfer* LG _qdel * LG _qgstat* L& _qgsub*

mar k: : / horre/ mar k/ t enp/ LA / daenon/ bi n>. / LA _qgst at

] job_id | state | target _resources |
application | time_stanp | owner s

Nunber of jobs listed : 0O

Thi s project ;LA

This project server : https://fwnc7003. 1 eidenuniv.nl/LG3
Project master server : https://fwnc7003.1eidenuniv.nl/Ld

47

mar k: : / hone/ mar k/ t enp/ LA / daenon/ bi n>. /LG _gstat -L

Thi s project ;LA

This project server : https://fwnc7003. 1 eidenuniv.nl/LA&
Project master server : https://fwnc7003.1eidenuniv.nl/Ld
Resour ce nane : mar k@ wnc7003. wks. gor | aeus. net
Resource capabilities : <hello_world> </hello_world>
Resource tine stanp : Sun Jun 21 20:37:26 2009 [1245609446]
Resour ce nane : mar k@ar pert own. wks. gorl aeus. net

Resource capabilities : <hello_world> </hello_world> <vasp> OW 8 cpu 8h 16Gb </vasp>
<sadvr-smal |l > OW 8 cpu 96h 16Gb </sadvr-snall> <adf> OW 8 cpu 96h 16Gb </ adf>
<mol pro> OWP 8 cpu 8h 16Gb </ nol pro>

Resource tine stanp : Sun Jun 21 16:33:52 2009 [1245594832]
Resour ce nane : mark@ apt op

Resource capabilities : <hello_world> </hello_world>
Resource tine stanp : Sun Jun 21 23:37:47 2009 [1245620267]
Resour ce nane : mar k@ocona. wks. gor | aeus. net

Resource capabilities : <hello_world> </hello_world> <gaussi an> OW 2 cpu 8h 4G
</ gaussi an>
Resource tine stanp : Sun Jun 21 21:07:35 2009 [1245611255]

Resour ce nane : mar k@wodcr est . wks. gor | aeus. net

Resource capabilities : <hello_world> </hello_world> <gaussi an> OW 8 cpu 96h 16CGb
</ gaussi an> <vasp> OW 8 cpu 96h 16Gb </vasp> <sadvr-small> OW 8 cpu 96h 16Gb

</ sadvr-smal | > <adf > OW 8 cpu 96h 16Gb </ adf >

Resource tine stanp : Sun Jun 21 16:36:38 2009 [1245594998]

Resour ce name . somers@uygens. sara. nl

Resource capabilities : <hello_world> </hello_world> <gaussian> OVWP 8 cpu 12h 128Gh
</ gaussi an> <vasp> OW 8 cpu 24h 128CGh </vasp> <sadvr> OW 16 cpu 96h 128CGb </sadvr>
<spodvr> OWP 16 cpu 96h 128CGh </spodvr>

Resource tine stanp : Sun Jun 21 16:39:27 2009 [1245595167]

Resour ce name : soners@i sa. sara.nl
Resource capabilities : <hello_world> </hello_world> <gaussian> 1 cpu 12h 2Gh
</ gaussi an> <vasp> 1 cpu 12h 2Go </vasp>

Resource tine stanp : Sun Jun 21 16:32:41 2009 [1245594761]

Resour ce nane : boi nc@wnc7128. wks. gor | aeus. net

Resource capabilities : <hello_world> </hello_world> <classical> </classical>
Resource tine stanp © Sun Jun 21 16:35:21 2009 [1245594921]

Resour ce nane : boi nc@wnc7129. wks. gor | aeus. net

Resource capabilities : <hello_world> </hello_world> <classical> </classical>
Resource tine stanp : Sun Jun 21 16:35:56 2009 [1245594956]

Resour ce nane : mar k@oeddha. gor | aeus. net

Resource capabilities : <hello_world> </hello_world> <cpnd> MPI 8 nodes 4 cpu 8h 4Gb
</ cpnd>

Resource tine stanp : Sun Jun 21 16:43:08 2009 [1245595388]

Resour ce nane : nsoners@ s0. das3. cs. vu. nl

Resource capabilities : <hello_world> </hello_world>

Resource tine stanp : Sun Jun 21 16:36:46 2009 [1245595006]

Resour ce nane : soners@i.grid.sara.nl

Resource capabilities : <hello_world> </hello_world> <classical> </classical>
Resource tine stanp : Sun Jun 21 16:37:40 2009 [1245595060]

mar k: : / horme/ mar k/ t enp/ LA / daenon/ bi n>. /L

LG _daenon* LG _filetransfer* LG _qdel * LG _qgstat* LG _qgsub*
mar k: : / home/ mar k/ t enp/ LA / daenon/ bi n>./ LG _daenon -h

./ LA _daenon [options] configfile

options:

48

-h this help.

-d daenoni ze and run in background.

-q log only critical nessages.

-n | og nornal nessages. this is the default.

-V al so |1 og debug nessages.

- VvV al so |1 og verbose debug nessages.

-W be less strict in hostnane checks of project server certificates.
-1 file use specified logfile. default is to log to standard out put.

mar k: : / hone/ mar k/ t enp/ LA / daenon/ bi n>./ LA _daenon -d ../ LA

LA .cfg LG . cfg. F\NC7003 LG .pid

mar k: : / hone/ mar k/ t enp/ LA / daenon/ bi n>. /LG _daenon -d ../ L3 . cf

L& .cfg LG . cf g. FWNC7003

mar k: : / hone/ mark/ t enp/ LA / daenon/ bi n>. /LA _daenon -d ../LAd.cfg -1 ../LA3.log

mar k: : / horme/ mar k/ t enp/ LA / daenon/ bi n>cat ../Ld .1 og

Mon Jun 22 10:38:33 2009 [NORVAL] daenon_configcl ass. cpp: 26 ::

DaenmonConfi g: : DaenonConfig; Reading config file ../Ld.cfg

Mon Jun 22 10:38: 33 2009 [NORVAL] daenon_confi gcl ass. cpp: 401 ::

DaenmonConfi gProj ect Application::1sValidConfigured; Configuration tested valid
Mon Jun 22 10:38: 33 2009 [NORVAL] daenon_confi gcl ass. cpp: 237 ::

DaenmonConfi gProj ect: :1sValidConfigured; Configuration tested valid

Mon Jun 22 10:38: 33 2009 [NORVAL] daenon_configcl ass. cpp: 62 ::

DaenpbnConfi g: : I sVal i dConfi gured; Configuration tested valid

Mon Jun 22 10:38: 34 2009 [NORVAL] daenon_nmmai ncl ass. cpp: 660 ::

Daenon: : Request Wr kCycl e; Request for work cycle done

mar k: : / horme/ mar k/ t enp/ LA / daenon/ bi n>. /L

LGE _daenon* L& filetransfer* LA _qdel * LG _qgstat* LG& _qgsub*
mar k: : / hone/ mar k/ t enp/ LA / daenon/ bi n>. /LA _gsub -a hello_world

Job has been submtted. Sone details:

Thi s project ;LA

Thi s project server : https://fwnc7003. 1 ei denuniv.nl/ LA
Project master server : https://fwnc7003.1eidenuniv.nl/Ld
User : mar k@ apt op

Groups : theor

Job id ;18

Job state : queued

Job application : hello_world

Job specifics <repository>

LE @wnc7003. wks. gorl aeus. net:/ mt/sdbl/ LA /trunk/repository/JOB_bd3d7c669f 1716a0d120b
f 680c27a285 </repository> <repository_url>

https://fwnc7003. | ei denuniv.nl /LG /repository/JOB_bd3d7c669f1716a0d120bf 680c27a285
</repository_url>

Target resources : o any

Job owners : mark@ apt op, theor

Read access on job : mar k@ apt op

Wite access on job : mar k@ apt op

Time stanp : Mon Jun 22 10:38:54 2009 [1245659934]
I nput :

Repository content : .LA _repository_wite_access

mar k: : / hone/ mar k/ t enp/ LA / daenon/ bi n>. /L
LG _daenon* LA _filetransfer* LA _qdel * Ld _gstat* LA _gsub*
mar k: : / hore/ mar k/ t enp/ LA / daenmon/ bi n>. / LG _qgst at

] job_id | state | target _resources |
application | tinme_stanp | owner s
1| 18 | queued | any |

hello_world | Mon Jun 22 10: 38:54 2009 | mark@ aptop, theor

Nurmber of jobs listed : 1

Thi s project e

Thi s project server : https://fwnc7003. | ei denuniv.nl/Ld
Project nmaster server : https://fwnc7003.1eidenuniv.nl/LG&

49

mar k: : / horre/ mar k/ t enp/ LA / daenon/ bi n>. / LA _qgst at

| job_id | state | target _resources
application | tinme_stanp | owner s
1] 18 | finished | mar k@ wnc7003. wks. gor | aeus. net |

hello_world | Mon Jun 22 10:54:37 2009 | mark@ aptop, theor

Nurmber of jobs listed : 1

Thi s project LA

Thi s project server : https://fwnc7003. | ei denuniv.nl/LA
Project master server : https://fwnc7003.1ei denuniv.nl/Ld

mar k: : / horme/ mar k/ t enp/ LA / daenon/ bi n>. /LG _qgstat 18

Thi s project . LA

This project server : https://fwnc7003. 1 ei denuniv.nl/LG&
Proj ect master server : https://fwnc7003.1eidenuniv.nl/Ld
User : mar k@ apt op

Groups : theor

Job id ;18

Job state : finished

Job application : hello_world

Job specifics <repository>

LG @wnc7003. wks. gorl aeus. net:/ mt/sdbl/ LG /trunk/repository/ JOB bd3d7c669f 1716a0d120b
f680c27a285 </repository> <repository_url>

https://fwnc7003. | ei denuniv.nl /LG /repository/JOB bd3d7c669f 1716a0d120bf 680c27a285
</repository_url>

Target resources ;. mar k@ wnc7003. wks. gor | aeus. net

Job owners : mar k@ apt op, theor

Wite access on job : mark@ apt op

Read access on job : mark@ apt op

Ti me stanp : Mon Jun 22 10:54: 37 2009 [1245660877]

I nput :

Qut put : Hello_World from mark@wnc7003. wks. gor |l aeus. net submitted with
i nput :

Repository content : . LA _repository_wite_access

mar k: : / horme/ mar k/ t enp/ LA / daenon/ bi n>. /L
LG _daenon* LG _filetransfer* LG _qdel * LG _qgstat* LG _qgsub*
mar k: : / hone/ mar k/ t enp/ LA / daenon/ bi n>. /LG _qdel 18

Job 18 deleted fromproject LA on server https://fwnc7003.|eidenuniv.nl/Ld

mar k: : / hone/ mar k/ t enp/ LA / daenon/ bin>ls ~/. LA/

ca_chain certificate defaultproject defaultserver groups mark@ aptop.pfx
privatekey user

mar k: : / hone/ mar k/ t enp/ LA / daenon/ bi n>cat ../L

Ld .cfg L3 .cfg. F\NC7003 LG .1 og LA .pid

mar k: : / hone/ mar k/ t enp/ LA / daenon/ bi n>cat ../Ld .1 o0g

Mon Jun 22 10:38:33 2009 [NORVAL] daenon_configcl ass. cpp: 26 ::

DaenonConfi g: : DaenonConfi g; Reading config file ../LA.cfg

Mon Jun 22 10:38:33 2009 [NORVAL] daenon_confi gcl ass. cpp: 401 ::

DaenmonConfi gProj ect Application::1sValidConfigured; Configuration tested valid
Mon Jun 22 10:38: 33 2009 [NORVAL] daenon_confi gcl ass. cpp: 237 ::

DaermonConfi gProj ect::1sValidConfigured; Configuration tested valid

Mon Jun 22 10:38: 33 2009 [NORVAL] daenon_configcl ass. cpp: 62 ::

DaenonConfi g: : 1 sVal i dConfi gured; Configuration tested valid

Mon Jun 22 10:38: 34 2009 [NORVAL] daenon_nmai ncl ass. cpp: 660 ::

Daenon: : Request Wr kCycl e; Request for work cycle done

Mon Jun 22 10:48: 34 2009 [NORVAL] daenon_j obcl ass. cpp: 371 :: DaenpnJdob: : DaenonJob; Job
with

JobDi rect ory=/ home/ mar k/ t enp/ LA / daenon/ runhere/ LG / hel | o_wor | d/ JOB_C9596EFECA07F1DB4E
CI9BA10D1692DCF has been setup

Mon Jun 22 10:48:34 2009 [NORVAL] daenpn_j obcl ass. cpp: 935 ::

50

DanpnJob: : RunJobCheckLi mi tsScript; Returned O for job with directory

/ horme/ mar k/ t enp/ LA / daenon/ runhere/ LA / hel | o_wor | d/ JOB_C9596EFECA07F1DB4ECOBA10D1692DC
F

Mon Jun 22 10:48:34 2009 [NORVAL] daenpn_nai ncl ass. cpp: 573 ::

Daenon: : Request Wr kCycl e; Job with directory

/ horre/ mar k/ t enp/ LA / daenon/ runhere/ LA / hel | o_wor | d/ JOB_C9596EFECA07F1DB4ECIBA10D1692DC
F accepted

Mon Jun 22 10:48:35 2009 [NORVAL] daenon_nmi ncl ass. cpp: 660 ::

Daenon: : Request Wr kCycl e; Request for work cycle done

Mon Jun 22 10:48: 35 2009 [NORVAL] daenon_j obcl ass. cpp: 947 ::

DanonJob: : RunJobCheckRunni ngScri pt; Returned 256 for job with directory

/'hone/ mar k/ t enp/ LA / daermon/ runhere/ LA / hel | o_wor | d/ JOB_C9596EFEC407F1DB4EC9BA10D1692DC
F

Mon Jun 22 10:48: 35 2009 [NORVAL] daenon_j obcl ass. cpp: 959 ::

DanonJob: : RunJobCheckFi ni shedScript; Returned 256 for job with directory

/'hone/ mar k/ t enp/ LA / daemon/ runhere/ LA / hel | o_wor | d/ JOB_C9596EFEC407F1DB4ECI9BA10D1692DC
F

Mon Jun 22 10:48: 35 2009 [NORVAL] daenon_j obcl ass. cpp: 971 ::

DanonJob: : RunJobPr ol ogueScript; Returned O for job with directory

/ hone/ mar k/ t enp/ LA / daenon/ runher e/ LG / hel | o_wor | d/ JOB_C9596EFECA07F1DB4ECIBA10D1692DC
F

Mon Jun 22 10:48: 35 2009 [NORVAL] daenon_j obcl ass. cpp: 1018 ::

DanpnJob: : RunJobRunScri pt; Script started on background for job with directory

/ hone/ mar k/ t enp/ LA / daenon/ runher e/ LG / hel | o_wor | d/ JOB_C9596EFECA07F1DB4ECIBA10D1692DC
F

Mon Jun 22 10:48: 35 2009 [NORVAL] daenon_nmmai ncl ass. cpp: 376 ::

Daenon: : Cycl eThr oughJobs; Schedul i ng cycl e through jobs done

Mon Jun 22 10:50: 36 2009 [NORMVAL] daenon_nai ncl ass. cpp: 660 ::

Daenon: : Request Wr kCycl e; Request for work cycle done

Mon Jun 22 10:50: 36 2009 [NORVAL] daenpn_j obcl ass. cpp: 947 ::

DanonJob: : RunJobCheckRunni ngScri pt; Returned O for job with directory

/'hone/ mar k/ t enp/ LA / daeron/ runhere/ LA / hel | o_wor | d/ JOB_C9596EFEC407F1DB4EC9BA10D1692DC
F

Mon Jun 22 10:50: 36 2009 [NORVAL] daenon_nmi ncl ass. cpp: 376 ::

Daenon: : Cycl eThr oughJobs; Schedul i ng cycl e through jobs done

Mon Jun 22 10:52: 36 2009 [NORVAL] daenon_j obcl ass. cpp: 947 ::

DanponJob: : RunJobCheckRunni ngScript; Returned O for job with directory

/'hone/ mar k/ t enp/ LA / daermon/ runhere/ LA / hel | o_wor | d/ JOB_C9596EFEC407F1DB4EC9BA10D1692DC
F

Mon Jun 22 10:52:36 2009 [NORVAL] daenon_nmai ncl ass. cpp: 376 ::

Daenon: : Cycl eThr oughJobs; Schedul i ng cycl e through jobs done

Mon Jun 22 10:54: 36 2009 [NORVAL] daenon_j obcl ass. cpp: 947 ::

DanponJob: : RunJobCheckRunni ngScri pt; Returned 256 for job with directory

/ hone/ mar k/ t enp/ LA / daenon/ runher e/ LG / hel | o_wor | d/ JOB_C9596EFECA07F1DB4ECIBA10D1692DC
F

Mon Jun 22 10:54: 36 2009 [NORVAL] daenon_j obcl ass. cpp: 959 ::

DanpnJob: : RunJobCheckFi ni shedScri pt; Returned O for job with directory

/ hone/ mar k/ t enp/ LA / daenon/ runher e/ LG / hel | o_wor | d/ JOB_C9596EFECA07F1DB4ECIBA10D1692DC
F

Mon Jun 22 10:54: 36 2009 [NORVAL] daenon_j obcl ass. cpp: 983 ::

DanpnJob: : RunJobEpi | ogueScript; Returned O for job with directory

/ horre/ mar k/ t enp/ LA / daenon/ runhere/ LA / hel | o_wor | d/ JOB_C9596EFECA07F1DB4ECIBA10D1692DC
F

Mon Jun 22 10:54: 37 2009 [NORVAL] daenopn_nai ncl ass. cpp: 332 ::

Daenon: : Cycl eThr oughJobs; Finished job with directory

/'hone/ mar k/ t enp/ LA / daeron/ runhere/ LA / hel | o_wor | d/ JOB_C9596EFEC407F1DB4EC9BA10D1692DC
F

Mon Jun 22 10:54: 37 2009 [NORVAL] daenon_j obcl ass. cpp: 616 ::

DaenonJob: : O eanUpJobDirectory; C eaned up job fromdirectory

JobDi rect ory=/ home/ mar k/ t enp/ LA / daenon/ runhere/ LA / hel | o_wor | d/ JOB_C9596EFECA07F1DB4E
C9BA10D1692DCF

Mon Jun 22 10:54:37 2009 [NORVAL] daenon_nai ncl ass. cpp: 376 ::

Daenon: : Cycl eThr oughJobs; Schedul i ng cycl e through jobs done

Mon Jun 22 10:54: 47 2009 [NORVAL] daenon_nmai ncl ass. cpp: 660 ::

Daenon: : Request Wr kCycl e; Request for work cycle done

Mon Jun 22 11:04: 48 2009 [NORVAL] daenon_nmi ncl ass. cpp: 660 ::

Daenon: : Request Wr kCycl e; Request for work cycle done

mar k: : / horme/ mar k/ t enp/ LA / daenon/ bi n>cat ~/tenp/test_LG /hello_world

test input

mar k: : / hore/ mar k/ t enp/ LA / daenon/ bi n>. /LG _qsub -a hello_world -i
~/tenmp/test_LG/hello_world

51

Job has been subnmitted. Sone details:

Thi s project ;LG

This project server : https://fwnc7003. 1 eidenuniv.nl/LG3
Project nmaster server : https://fwnc7003.1eidenuniv.nl/LG3
User : mar k@ apt op

Groups : theor

Job id 119

Job state : queued

Job application : hello_world

Job specifics <repository>

LG @wnc7003. wks. gorl aeus. net:/ mt/sdbl/ LA /trunk/repository/JOB 5cdcOdcee3a253598b413
18ddd091dca </ repository> <repository_url >

https://fwnc7003. | ei denuniv.nl /LG /repository/JOB_5cdcOdcee3a253598b41318ddd091dca
</repository_url>

Target resources :any

Job owners : mark@ apt op, theor

Read access on job : mar k@ apt op

Wite access on job : mark@ apt op

Ti me stanp : Mon Jun 22 11:06: 26 2009 [1245661586]
I nput : test input

Repository content : . LA _repository_wite_access

mar k: : / horme/ mar k/ t enp/ LA / daenon/ bi n>. / LG
LGE _daenon* L& filetransfer* LA _qdel * LG _qgstat* LG& _qgsub*
mar k: : / hone/ mar k/ t enp/ LA / daenon/ bi n>. / LG _gst at

| job_id | state | target_resources
application | time_stanp | owner s
1 19 | queued | any |

hello_world | Mon Jun 22 11:06:26 2009 | mark@ aptop, theor

Nurmber of jobs listed : 1

Thi s project ;LA

Thi s project server : https://fwnc7003. | ei denuniv.nl/Ld
Project master server : https://fwnc7003.1ei denuniv.nl/Ld

mar k: : / horme/ mar k/ t enp/ LA / daenon/ bi n>. /LG _qgstat 19

Thi s project . LA

This project server : https://fwnc7003. | ei denuniv.nl/LA3
Proj ect master server : https://fwnc7003.1eidenuniv.nl/Ld
User : mar k@ apt op

G oups : theor

Job id 119

Job state : queued

Job application : hello_world

Job specifics <r eposi tory>

LE @wnc7003. wks. gorl aeus. net:/ mt/sdbl/ LG /trunk/repository/ JOB 5cdcOdcee3a253598b413
18ddd091dca </repository> <repository_url>

https://fwnc7003. | ei denuni v.nl /LG /repository/JOB_5cdcOdcee3a253598b41318ddd091dca
</repository_url>

Target resources : o any

Job owners : mar k@ apt op, theor

Wite access on job : mark@ apt op

Read access on job : mar k@ apt op

Ti me stanp : Mon Jun 22 11:06: 26 2009 [1245661586]
I nput : test input

Cut put :

Repository content : . LA _repository_wite_access

mar k: : / hone/ mar k/ t enp/ LA / daenon/ bin>. /LA _filetransfer |ist

52

https://fwnc7003. | ei denuniv.nl /LG /repository/JOB 5cdcOdcee3a253598hb41318ddd091dca
.LG _repository_wite_access 11 Mon Jun 22 11:06:26 2009 [1245661586]

mar k: : / hone/ mar k/ t enp/ LA / daenon/ bi n>. /LA _fil etransfer upl oad
https://fwnc7003. | ei denuniv.nl /LG /repository/JOB 5cdcOdcee3a253598b41318ddd091dca
~/tenp/test LA /cpnd.inp

Upl oaded to
"https://fwnc7003. 1 ei denuniv.nl /LG /repository/JOB 5cdcOdcee3a253598b41318ddd091dcal/ cp
nd. i np'

mar k: : / horme/ mar k/ t enp/ LA / daenmon/ bi n>. /LG _filetransfer |ist

https://fwnc7003. | ei denuniv.nl /LG /repository/JOB _5cdcOdcee3a253598b41318ddd091dca
.LG _repository_wite_access 11 Mon Jun 22 11:06:26 2009 [1245661586]
cpnd. i np 864 Mon Jun 22 11:07:50 2009 [1245661670]

mar k: : / horme/ mar k/ t enp/ LA / daenon/ bi n>. /LA _filetransfer delete
https://fwnc7003. | ei denuniv.nl /LG /repository/JOB_5cdcOdcee3a253598b41318ddd091dca
cpmd. i np

Del et ed
"https://fwnc7003.1eidenuniv.nl /LG /repository/JOB 5cdcOdcee3a253598b41318ddd091dca/ cp
md. i np'

mar k: : / horre/ mar k/ t enp/ LA / daenon/ bi n>

